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SUMMARY

Most human epithelial tumors harbor numerous
alterations, making it difficult to predict which genes
are required for tumor survival. To systematically
identify cancer dependencies, we analyzed 501
genome-scale loss-of-function screens performed
in diverse human cancer cell lines. We developed
DEMETER, an analytical framework that segregates
on- from off-target effects of RNAi. 769 genes were
differentially required in subsets of these cell lines
at a threshold of six SDs from the mean. We found
predictive models for 426 dependencies (55%) by
nonlinear regression modeling considering 66,646
molecular features. Many dependencies fall into a
limited number of classes, and unexpectedly, in
82% of models, the top biomarkers were expression
based. We demonstrated the basis behind one
such predictive model linking hypermethylation of
the UBB ubiquitin gene to a dependency on UBC.
Together, these observations provide a foundation
for a cancer dependency map that facilitates the pri-
oritization of therapeutic targets.
INTRODUCTION

Multiple genetic or epigenetic changes are required to program

the malignant state. Although we now have an initial view of

the landscape of genetic alterations that occur in cancers, our

understanding of the biological impact of these features and

how they conspire to induce specific tumor vulnerabilities is

largely incomplete. As a result, the use of genetic information

from tumors to enable cancer precision medicine is limited.

One approach to identifying genes essential for cancer cell

proliferation/survival is to perform systematic loss of function

screens in a large number of well-annotated cell lines represent-
564 Cell 170, 564–576, July 27, 2017 ª 2017 Elsevier Inc.
ing the heterogeneity of tumors. We and others have demon-

strated that these experiments are feasible (Aguirre et al.,

2016; Cheung et al., 2011; Cowley et al., 2014; Luo et al.,

2008; Marcotte et al., 2012, 2016), and the interrogation of single

or multiple lineages has identified new oncogenes and genes

essential for cell proliferation or the activity of specific signaling

pathways (Aguirre et al., 2016; Barbie et al., 2009; Cheung

et al., 2011; Cowley et al., 2014; Luo et al., 2008; Marcotte

et al., 2012, 2016). However, these RNAi and CRISPR-Cas9

experiments have been limited by off-target effects of such

reagents (Aguirre et al., 2016; Birmingham et al., 2006; Buehler

et al., 2012b; Jackson and Linsley, 2004; Munoz et al., 2016)

and also by an insufficient number of cell line models to

adequately represent the full spectrum of the molecular

complexity of cancer.

Here, we have integrated a large number of genome-scale

RNAi-based loss-of-function screens to facilitate the interroga-

tion of gene function. Using this dataset, we developed an

analytical approach that quantifies on- and off-target effects

of each RNAi reagent. By combining this information with a

comprehensive genomic characterization of these cell lines,

we systematically predicted cancer dependencies, thereby es-

tablishing an initial framework for a cancer dependencies map.
RESULTS

Overcoming Off-Target Effects of RNAi to Accurately
Infer Cancer Dependencies
Although RNAi is a powerful technique, microRNA (miRNA)

‘‘seed’’-based off-target effects have been reported to confound

experimental interpretation (Birmingham et al., 2006; Buehler

et al., 2012b; Jackson et al., 2006). We hypothesized that explic-

itlymodeling on- and off-target effects induced by RNAi in a large

set of cancer cell lines would provide the means to estimate the

on-target effects of suppressing genes in these experiments. We

first built on our previous study of 216 human cancer cell lines

(Cowley et al., 2014) by screening an additional 285 cell lines.

In brief, these screens consist of transducing each cell line
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Figure 1. Computational Segregation of On- and Off-Target Effects of RNAi

(A) Tumor types by their contribution to cancer mortality (left) and their cancer cell line representation in the reported dataset (right).

(B) Distributions of Pearson correlation coefficients for pairs of shRNA viability profiles before (left) and after (right) removal of inferred seed effects and selection of

effective shRNAs (n > 12,000) by DEMETER. Pairs of shRNAs selected randomly (blue lines), targeting the same gene (orange) and sharing a seed

sequence (green).

(legend continued on next page)
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with a genome-scale library of �100,000 short hairpin RNAs

(shRNAs) at low MOI in �60 M cells for each of four replicates,

so that each cell gets one shRNA, passaging the cells for 16 dou-

blings, up to 40 days, and then assessing by massively parallel

sequencing the depletion of each shRNA from the cell population

versus its relative abundance in the original pooled library of

shRNA plasmids. The genes targeted by the most depleted

shRNAs are inferred to bemost essential for proliferation/viability

(see STAR Methods for details). The resulting compiled dataset

of genome-scale screens in 501 cell lines includes a wide diver-

sity of cancer types (Figure 1A; Table S1).

First, we empirically assessed the prevalence of off-target ef-

fects induced by RNAi. Essentially all shRNAs in the library

(>99.3%) have a seed sequence that is shared by at least one

other shRNA designed to target a different gene (average 12

shRNAs per seed). We found that shRNA depletion scores for

pairs of shRNAs that share 7-mer miRNA-like seed sequences

were significantly more correlated (mean Pearson correlation co-

efficient r = 0.37) than profiles of shRNAs targeting the same

gene (mean r = 0.03; p value <10�15, Mann-Whitney U test; Fig-

ures 1B and S1B). These observations confirm that miRNA-like

seed effects are highly prevalent in RNAi in this dataset.

Both on-target and seed-based effects of RNAi are sequence

specific. However, previous solutions to overcome seed effects

have been incomplete as they focused on reduction of false-pos-

itive results usingmultiple shRNA constructs targeting each gene

(Kampmann et al., 2013, 2015), inferring on-target effects by

identifying shRNA constructs that induce strong concordant

on-target effects (Shao et al., 2013), or identifying the seed-

based effects (Buehler et al., 2012b; Yilmazel et al., 2014). The

gespeR approach (Schmich et al., 2015) considers both on-

and off-target effects but involves a computational prediction

of seed targets for each reagent. We reasoned that explicitly

modeling the combined on-target and seed-based effects

directly from the empirical screen data would improve the esti-

mates of the gene-knockdown effects. We, therefore, developed

a computational method (DEMETER) that uses the depletion

values induced by each shRNA construct to infer the effect of

suppressing its intended target (on-target) and of expressing a

given miRNA seed (off-target) in each screened cell line. It

models each depletion value as a sum of two unobserved quan-

tities: gene knockdownand seed-based effects. It then estimates

these quantities by fitting the model to the full dataset. This is

possible as the shRNA libraries we used containmultiple shRNAs

designed to target each gene as well as multiple shRNAs

harboring each seed sequence (Figure 1C; STAR Methods). We

applied DEMETER to obtain, in each of 501 cell lines, gene-level

differential dependency scores for 17,098 unique genes and
(C) Schematic representation of DEMETER and its computational model. Gene- a

inner circles represents the shRNA target gene, and the color of outer circles rep

(D) For the top 0.1%most depleted shRNA readouts and the top 0.1% DEMETER

corresponding to a cell line not expressing the target gene.

(E) A heatmap depicts the dependency scores (rows) across 501 screened lines

dependency profiles (Z score >3). These data were used to plot a gene network

pendency profiles.

(F and G) Genes are colored by functional classes. The same analysis was used

See also Figure S1 and Tables S1, S2, and S3.
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seed-sequence effects for 15,142 unique 7-mer sequences

(available at https://portals.broadinstitute.org/achilles), as well

as performance metrics for each shRNA (Table S2). When we

subtracted inferred seed effects from each shRNA and recom-

puted the correlation coefficient between shRNA constructs tar-

geting the same gene, we found that gene-targeting shRNA pairs

were now substantially more correlated (p value <10�15, Mann-

Whitney test; Figure 1B), validating our approach.

To determine whether DEMETER facilitates the use of RNAi to

identify biological relationships, we assessed three parameters.

First, we reasoned that non-expressed genes were unlikely to be

required for viability. Indeed, the fraction of the highest (top

0.1%) DEMETER dependency scores that represented gene-

cell line combinations where the gene was non-expressed was

9-fold lower than for the most dependent shRNA-level readouts

(Figure 1D). This finding is consistent with our prediction that

DEMETER effectively corrects for off-target effects of shRNAs.

Second, we compared the dependency profiles corresponding

to a subset of genes encoding physically interacting proteins

and found a 43-fold increase in highly correlated (Pearson r Z

score >3) dependency profiles among 20,466 pairs of gene

products annotated to be in the same physical complex as

compared to random gene pairs (p value <10�15; Fisher’s exact

test; Figure S1A; STAR Methods). This represents a 3-fold

improvement over the performance of a correlation-based

method (Shao et al., 2013). Third, by extending this finding to

members of the same pathway, we confirmed that we were

able to discover known biological relationships directly from

correlated dependency profiles (STAR Methods; Table S3). We

note three representative examples: (1) PIK3CA dependency

profiles were tightly correlated with known pathway members

(MTOR, PDPK1, AKT1, and ERBB3) (Figure 1E), (2) cell lines

that were more dependent on the expression of the PTK2 tyro-

sine kinase were also more dependent on specific members of

integrin/focal adhesion, and actin cytoskeleton regulating path-

ways (Figure 1F), and (3) cell lines dependent on MED12 were

correlated with members of the mediator complex (Figure 1G).

These cases were among many other examples such as mem-

bers of the PRC2, SWI/SNF complexes, and mitochondrial res-

piratory genes where one or more members of the complex

were identified (Figure S1C).

Furthermore, we noted that cells that depend on PIK3CA also

required the expression of the key splicingmediatorsCPSF3 and

SRRM1 (Figure 1E), and cells that depend on PTK2 required the

transcription factor TEAD1 and the glycosyltransferase RPN2

(Figure 1F). Finally, cells that required MED12 also depended

on specific members of the cohesin, splicing, 20S proteasome,

and RNA polymerase complex (Figure 1G), suggesting that this
nd seed-related effects are estimated from shRNA depletion data. The color of

resents the shRNAs seed sequence.

gene dependency scores across the whole dataset, the fraction of data points

(columns) for PIK3CA and the seven genes that have significantly correlated

, with each edge representing a significant correlation between a pair of de-

to generate gene networks for PTK2 (F) and MED12 (G).

https://portals.broadinstitute.org/achilles


approach also permits the discovery of new co-dependency re-

lationships. Together, these observations demonstrate that

DEMETER provides a rigorous approach to distinguishing on-

and off-target effects of RNAi and facilitates the discovery of

novel cancer dependencies and biology.

Systematic Identification of Differential Dependencies
We next undertook a census of cancer dependencies. To define

those more likely to be cancer specific, we focused on genes

with a robust differential dependency identified in a minority of

the 501 cancer cell lines (DEMETER gene dependency scores

that are multiple SDs beyond the mean) (Figure 2A).

The number of differential dependencies identified in this

census is a function of both the magnitude of the differential de-

pendency and its prevalence in our cell line collection (Figure 2B).

Across the 501 cell lines, we identified a set of 769 strong differ-

ential gene dependencies for which the DEMETER scores of at

least one cell line were six SDs (6s) or greater from the mean

across all cell lines (Table S4). Using a stringent threshold pro-

vides high confidence that these are true differential depen-

dencies rather than false-positive results. We found that 92%

of the cell lines (n = 460) harbored at least one such 6s depen-

dency (Figure 2C). Overall, these 769 genes represent many

different classes of proteins including transcription factors and

kinases (Figure 2D), and 20% of these (n = 152) have been anno-

tated as potentially druggable (Figure 2E). Furthermore, 53 of the

6s dependencies are common to at least 5% of the cell lines

(n = 25). Consistent with these observations, we found that as

few as 76 genes represent 6s dependencies in 92% of the cell

lines, and indeed we found multiple gene sets of this size. Simi-

larly, sets of only ten genes captured 6s dependencies in 58%

the cell lines. This observation suggests that a modest number

of therapeutic targets might be relevant across a disproportion-

ately large number of tumors. Indeed, 74%of the cell lines had at

least one 6s dependency representing a readily druggable target

(Figure 2F; Table S4).

Predicting Dependencies from Molecular Features
The ability to predict cancer dependencies from tumor features

may provide insights into mechanism and opportunities for pa-

tient stratification. Thus, we next asked whether we could iden-

tify features that predict these 6s dependencies. To achieve this

goal, we developed a nonlinear regression model (ATLANTIS)

that is based on conditional inference trees (Hothorn et al.,

2006), an adaptation of the random forest model (see STAR

Methods). We used it to create predictive models for gene de-

pendency scores from 66,646 molecular features (somatic

genemutations, gene copy number, gene expression) measured

at baseline as part of the Cancer Cell Line Encyclopedia (CCLE)

project (Barretina et al., 2012) (see STAR Methods). We initially

focused on non-hematopoietic cell lines because they repre-

sented the majority of the cell lines (455/501) and because they

have substantially different gene expression patterns than he-

matopoietic cell lines (Barretina et al., 2012).

Using this approach, we generated predictive models

(marker dependency pairs [MDPs]) with statistically significant

accuracy (false discovery rate [FDR] <0.05; permutation test)

for 289 (38%) of the 769 6s dependencies (see STAR Methods;
Figures 3A and 3B). An unbiased approach utilizing a large num-

ber of candidate predictive features (66,646) is useful for finding

unexpected marker dependency relationships, but it also cre-

ates a very high bar for statistical significance. To address

this, we also employed an alternative approach whereby the

feature space was reduced based on prior biological knowl-

edge. Specifically, for each target dependency, we used molec-

ular features of genes representing direct physical interaction,

membership in protein complexes, or membership in known

signaling pathways (named collectively ‘‘related features,’’ see

below and STAR Methods). These metrics yielded 361 signifi-

cant MDPs, of which 251 overlap with the unbiased approach

(Figures 3A and 3B). Having discovered MDPs for high-confi-

dence 6s dependencies, we next applied them to 5,536 candi-

date dependencies at lower confidence levels (between a

threshold of 2s and 6s from the mean). These additional ana-

lyses netted significant MDPs for 741 additional genes, a rate

(13.4%) much lower than observed for 6s dependencies

(51.8%), reflecting the lower signal in this candidate depen-

dencies set (Figures 3B and S2A).

We next examined the nature of the biomarkers that led to pre-

dictive models of dependency. Specifically, we asked whether

DNAmutation, copy number, or RNA expression was particularly

informative with respect to predicting dependencies. Surpris-

ingly, the vast majority of predictable differential dependencies

(82%) were best predicted by RNA expression levels, whereas

DNA mutation accounted for only 16% and DNA copy number

only 2% (Figure 3C). This observation is in concordance with

the observation that small-molecule cancer dependencies

are similarly most commonly predicted by gene expression

(Seashore-Ludlow et al., 2015).

While these MDPs included many previously described

relationships (Figures 3D and 6B), additional markers were

discovered in most cases. For example, we found that

mutations in KRAS or BRAF were anticorrelated with depen-

dency on PTPN11, an activator of the RAS pathway (Figure 3D).

Likewise, expression of known TP53 transcriptional targets

(RPS27L, CDKN1A, and EDA2R) as well as the ELMSAN1,

and ACER2 genes predicted MDM4 dependency, consistent

with MDM4 functioning as a negative regulator of TP53. Novel

biological relationships were also discovered, suggesting new

mechanistic hypotheses. For instance, strong dependency on

the actin-regulating CYFIP1 gene was predicted by expression

of integrin and membrane raft proteins (ICAM4, ITGB4, MALL)

(Figure 3D). In many cases, multivariate predictive models,

which use multiple features, held greater predictive power

than those restricted to single features (Figure 3E). Together,

these results support the notion that the ability to predict

a cancer dependency provides helpful insight into the

mechanistic underpinnings driving differential dependencies

in cancer.

Classification of Differential Dependencies
Having found a large number of dependencies (many of which

are accompanied by predictive biomarkers), we asked whether

they could be classified into distinct biological classes.

One class of MDPs, where somatic mutation or copy number

gain of a gene predicts a dependency on the same gene for
Cell 170, 564–576, July 27, 2017 567
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Figure 2. The Landscape of Genetic Dependencies in 501 Cancer Cell Lines
(A) Histograms of gene dependency scores for the indicated genes for all cell lines (x axis).

(B) For each differential dependency strength (line color), and for each number of cell lines (x axis), the number of genes that are differential dependencies is shown

(y axis).

(C) Distribution of the number of 6s dependencies per cell line.

(D) Distribution of 6s dependencies by protein classes.

(E) The number of 6s dependencies annotated as druggable by either being included in DGIdb or International Union of Basic and Clinical Pharmacology

(IUPHAR)/British Pharmacological Society (BPS) Guide to Pharmacology.

(F) The fraction of cell lines (y axis) that have a 6s differential dependency on at least one gene in a set of a given size (x axis). Blue line, considering all

6s dependencies; orange line, considering only druggable ones.
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Figure 3. Prediction of Differential Depen-

dencies Using Molecular Markers

(A) The number of 6s dependencies with predictive

models built using all features (Unbiased, blue),

features of genes related to the dependency gene

(Related, red), and those falling into one of the four

identified dependency classes (green).

(B) Cumulative fraction of 6s and non-6s de-

pendencies with predictive models (y axis) using all

features (red bars), plus related features (green),

plus those in the four dependency classes (blue).

(C) The proportion of the top predictive feature

type (copy number, orange; expression, green;

mutation, blue) in all unbiased models of 6s de-

pendencies.

(D) Top five features of predictive models for three

gene dependencies in white circles. Circle size is

proportional to the relative importance of each

feature to the model’s predictive power.

(E) Predictive accuracy of ATLANTIS models using

only single features (black and colored bars) and

using all features (gray bars).

(F) Four classes of MDPs, each with a represen-

tative example and the top ten predictable de-

pendencies. Red dotted circles highlight the most

dependent cell lines. (top left) A histogram of

GNAI2 dependency scores (x axis). The two cell

lines most dependent on GNAI2 harbor the same

indel mutation. (top right) POU2F2 dependency

scores (x axis) and expression levels (y axis).

Cell lines overexpressing POU2F2 are the most

dependent lines. (bottom left) RPL17 dependency

(x axis) and copy number (y axis) illustrating a

CYCLOPS dependency. (bottom right) FERMT1

dependency (x axis) and FERMT2 expression

levels (y axis) for cell lines with low expression of

FERMT3 (log2RPKM <3). Cell lines most depen-

dent on FERMT1 do not express FERMT2.

See also Figure S2 and Tables S4, S5, and S6.
survival, includes known oncogenes. To identify such MDPs, we

attempted to build models that would predict each dependency

using only the gene’s own mutation and amplification features;

however, we noted that in some cases few cell lines existed

harboring each mutation, limiting our statistical power. Thus,

for completeness, we also searched for cases in which cell lines

differentially dependent on a gene were enriched for mutations in

that gene (Table S5; see STARMethods). In total, we discovered

47 such mutation-driven MDPs, including 18 corresponding to

6s dependencies (Figure 3F; Table S6).

While these dependencies included the known oncogenes

KRAS, NRAS, HRAS, BRAF, PIK3CA, MET, MCL1, MDM2,
and ESR1, they also included multiple

novel dependencies including SOX10,

DOCK2, and GNAI2. Interestingly, the

two diffuse large B cell lymphoma cell

lines with a 6s dependency on the small

GTPase GNAI2 (Morin et al., 2013)

harbored the same in-frame deletion

(p.K272del), suggesting that such muta-

tions are activating and that targeting
GNAI2 inGNAI2mutant cancers might be an effective therapeu-

tic strategy (Figure 3F, top left).

By contrast, 399 (30%) of the dependencies with biomarkers,

including 184 6s dependencies, represented genes for which

hemizygous copy number loss and/or reduction in expression

levels were predictive of increased dependency. These findings

extend our previous report describing this class of cancer de-

pendencies that we termed CYCLOPS genes (Nijhawan et al.,

2012) (Figure 3F, bottom left; Table S6; STAR Methods). This

class of MDPs includes the previously validated dependencies

PSMC2 (Nijhawan et al., 2012) and POLR2A (Liu et al., 2015)

as well as novel candidates such as members of the kinetochore
Cell 170, 564–576, July 27, 2017 569
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Figure 4. Oncogene and Expression Addiction MDPs Are Enriched in Lineage-Specific Transcription Factors

(A) Percentage of transcription factors (TF) among all genes and the four dependency classes. *p value <0.05, ***p value <10�15, Fisher’s exact test.

(B) Lineage enrichment (odds ratio; y axis) of mutation- and expression-driven TF dependencies (n = 50) for lineages (x axis) with significant enrichment (Fisher’s

exact FDR <0.05) in a single (blue) or multiple (orange) lineages.

(C) Distributions of 6s TF dependencies overrepresented in non-essential lineages (ovary, breast, prostate, multiple myeloma, and melanoma) compared to

known mutation-driven dependencies (BRAF, PIK3CA); dots depict dependency scores greater than 4s.
associated complex (SKA1), SET1 complex (WDR82), or medi-

ator complex (MED9).

We next evaluated a third distinct class of MDPs, representing

genes whose elevated expression is associated with depen-

dency. Such expression-driven dependencies include lineage-

specifying transcription factors such as SPDEF, NKX2-1, and

PAX8 (Buchwalter et al., 2013; Cheung et al., 2011; Weir et al.,

2007). In all, we discovered 123 (9%) such dependencies,

including 33 6s dependencies (see STAR Methods). Indeed, 49
570 Cell 170, 564–576, July 27, 2017
(45%) of such dependencies were transcription factors (Fig-

ure 4A), many known to act as master regulators in the specifica-

tion and survival of particular tissue lineages (Buchwalter et al.,

2013; Laury et al., 2011).

We next investigated in greater detail the relationships be-

tween specific cancer types and master transcription factor de-

pendencies. Since targeting such transcription factors may also

induce cell death in normal tissues expressing those factors, we

paid particular attention to transcription factor dependencies
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Figure 5. UBB/UBC as a Paralog Deficiency

MDP in Ovarian Cancer Cell Lines

(A) UBC dependency scores (x axis) versus UBB

expression levels (y axis).

(B and C) UBB expression (y axis) versus promoter

methylation (x axis; Fraction) in (B) ovarian cell

lines (CCLE data) and (C) tumors (TCGA data).

(D) GFP viability competition assay in UBBlow

and UBBhigh ovarian cell lines using four shRNAs

targeting UBC. Log2 fold change of shUBC-ex-

pressing cells relative to negative controls is

shown.

(E) Time course of relative viability upon UBC

suppression with or without ectopic expression of

monoubiquitin (UBB) in a UBBlow cell line (SNU8).

Data represent fold change relative to day 1

normalized to pLKO_TRC005 nullT. Error bars

represent SD.

(F) Levels of conjugated ubiquitin upon UBC sup-

pression in UBBlow (SNU8) and UBBhigh (TOV112D)

cell lines.

See also Figures S3 and S4.
restricted to specific cell lineages. Indeed, while multiple line-

ages were dependent on transcription factors such as TEAD1,

several cancer lineages were specifically dependent on partic-

ular master transcription factors (Figure 4B), including ESR1,

TFAP2C, GATA3, SPDEF, and FOXA1 in breast cancer and

HOXB13 in prostate cancer, as previously reported (Buchwalter

et al., 2013; Marcotte et al., 2016; Pomerantz et al., 2015), as well

as novel candidates including SATB2 in colorectal cancer and

LYL1 in acute myeloid leukemia (AML). Particularly interesting

among these lineage-related dependencies are those involved

in cell types or organs that are not essential for adult survival

(e.g., prostate, breast, thyroid, ovary, melanocytes, plasma

cells). Examples of 6s dependencies in dispensable lineages

include ESR1, FOXA1, GATA3, IRF4, SOX10, and SPDEF; the

strength of such dependencies was comparable to mutation-

driven dependencies (Figure 4C). Together, these observations

suggest that these strong lineage-specific cancer dependencies

represent potential cancer targets as evidenced by the success

of estrogen receptor inhibitors in breast cancer.

Finally, we observed a fourth prominent class of 87 depen-

dencies (7%), including 27 6s ones, for which the functional

loss of one paralog is associated with a dependency on another.

While previous reports have noted examples of such paralog

deficiency dependencies (Aksoy et al., 2014; D’Antonio et al.,

2013; Helming et al., 2014; Muller et al., 2012; Wilson et al.,

2014), here we systematically identified over 80 such depen-
dencies using ATLANTIS (Table S6). For

example, we identified low FERMT2

expression as a marker for FERMT1 de-

pendency, a gene involved in integrin

and cytoskeleton regulation (Figure 3F,

bottom right). Focusing only on solid tu-

mor lineages, where FERMT2 is mostly

expressed (Figure S2B), we found that

very few cell lines expressed either

FERMT1 or FERMT2, and the subset of
cells with no FERMT2 expression was exquisitely dependent

on FERMT1 (Figures S2C and S2D). These results indicate that

epithelial cells require either FERMT1 or FERMT2 for survival.

Together these observations demonstrate that a large fraction

(45.8%) of the dependencies, for which a predictive model was

found, fall into at least one of these four classes (Figures 3A

and 3F). Moreover, mutation-driven dependencies represented

only a small minority of these dependencies, suggesting that

there exists a large number of unexpected, strong differential de-

pendencies that may serve as therapeutic targets.

Mechanistic Investigation of UBC Dependency
Dependency on the UBC ubiquitin gene was one of the most

highly predictable 6s paralog deficiency dependencies (Table

S6), with low expression of UBB as the top marker (Figure S3A).

Indeed, we found that all 20 cell lines (100%) with low expression

of the UBB ubiquitin gene were highly dependent on the UBC

ubiquitin gene (Figure 5A).

SinceUBB expression is uniform across themajority of normal

tissues (Figure S3B; GTEx), we hypothesized that somatic loss of

UBB expression in cancer occurred through gene deletion or

epigenetic silencing. While no relationship was observed with

copy number (Figure S3C), we found that loss ofUBB expression

and UBB promoter hypermethylation was frequent in ovarian

and uterine tumors (Figures S3D and S3E). UBB expression

was correlated with promoter hypermethylation, as assessed
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by reduced-representation bisulfite sequencing (RRBS) in both

cell lines and ovarian tumors (Figures 5B and 5C).

We next validated the DEMETER-inferredUBC dependency in

ovarian cancer cell lines. Indeed, four cell lines expressing low

levels ofUBBwere highly dependent onUBC in contrast to three

cell lines expressing average UBB levels (p value <0.03, Mann-

Whitney U test; Figure 5D). As expected, the degree of UBC

effect inversely correlated with DEMETER gene values (Figures

S4A). Moreover, RNAi reagents that contained matched seed

sequences but do not target UBC failed to induce cell death

(see STAR Methods [C911 controls]; Figure S4B) (Buehler

et al., 2012a), confirming that the observed effects were due to

on-target activities of these shRNAs.

We further explored the UBB-UBC dependency relationship.

First, we found that UBB and UBC are co-regulated, since can-

cer cell lines that express low levels of UBB expressed higher

levels ofUBC (Figure S4D). We also found thatUBC suppression

inducedUBB expression (Figure S4C). Exogenous expression of

monoubiquitin from a UBB ORF in cell lines with low UBB levels

alleviated the requirement for UBC expression (p value = 0.026,

F-test) (Figures 5E and S4E). Finally, we found that suppression

of UBC expression resulted in a decrease in total levels of conju-

gated ubiquitin in UBBlow but not UBBhigh cell lines (Figures 5F

and S4F).

Taken together, these results confirm that cells require either

UBB or UBC for survival, suggesting that these proteins may

functionally buffer each other. The recent elucidation of protein

degradation as the mechanism by which lenalidomide induces

cell death in myeloma suggests that targeting this and other

MDPs may prove useful (Krönke et al., 2014; Lu et al., 2014). In

addition, these observations demonstrate that MDPs may not

only have diagnostic potential, but also facilitate rapid insights

into the mechanistic basis of dependencies in cancer.

Progress toward a Cancer Dependency Map
A consensus visualization of the results described above pro-

duced an initial map of cancer dependencies and predictive po-

wer (Figures 6A and S5A–S5F). As a final step, we took two com-

plementary approaches to determine the completeness of this

map. First, we curated a list of 39 oncogene addictions from

the literature, including validated drug responses (Table S7;

see STAR Methods). Our dataset identified a differential depen-

dency on 33 (85%) of these genes and returned the ‘‘concor-

dant’’ marker in 20 (51%) instances (Figure 6B). For the other

13 cases (33%), either distinct, yet biologically meaningful

markers were discovered (five) or the dataset did not include

cell lines that harbored the validated marker (six).

In six (15%) of the remaining cases, the dataset did not include

cell lines that harbored the validated marker. Accordingly, we

successfully derived predictive models for 86%of the 6s depen-

dencies present in over 20 cell lines, but only 45% of the 6s

dependencies present in only one cell line (Figure 6C). These

observations suggest that more cellular contexts are needed

to both observe and predict each dependency.

Leveraging these concepts, we performed a down-sampling

analysis to evaluate how scaling the number of cell line contexts

relates to the ability to observe dependencies. In this analysis,

we first determined the sensitivity of smaller datasets to observe
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dependencies discovered in the complete dataset (Figure 6D,

blue line). These results show an inflection point in the rate of

6s dependency discovery at a dataset size of 200–300 cell lines.

While exact extrapolation is difficult due to cell line contexts that

are completely absent, these results are consistent with a pre-

diction that approximately 1,000 cell lines may be needed to

observe most 6s dependencies in cancer at least once. How-

ever, given the result that observing a dependency in >20 cell

lines is required to predict >80%of 6s dependencies (Figure 6C),

we noted that at least an order of magnitude increase in scale

beyond the present 501 cell lines (>5,000) is likely to be needed

to fully predict most cancer dependencies from cell features (Fig-

ure 6D, green and red lines).

DISCUSSION

Using RNAi-based, loss-of-function genetic screens in 501 can-

cer cell lines, we identified genes whose expression is required

for the proliferation or survival of subsets of these cell lines and

developed an approach to identifying features that predict these

gene dependencies. This cancer dependency map provides an

approach to defining and predicting genes that are essential

for cell viability, thereby facilitating the identification of cancer

targets. We have made all of these data and analysis results

available at https://depmap.org/rnai.

The off-target effects of shRNAs have become increasingly

recognized, and this has led to skepticism about the utility of

RNAi-based screens. To the contrary, we show here that such

off-target effects can be distinguished from on-target effects re-

sulting in highly reproducible and biologically meaningful results.

We previously reported the use of the ATARiS algorithm to inte-

grate across often discordant measurements obtained from

different shRNAs targeting the same gene (Shao et al., 2013).

While somewhat effective, residual off-target shRNA effects

remained. Related approaches to minimize off-target effects

have similarly been described (Cheung et al., 2011; König

et al., 2007; Marcotte et al., 2016; Zhang et al., 2011). The

DEMETER method introduced here, however, leverages the

observation that the majority of shRNA off-target effects are

attributable to miRNA seed sequences. We hypothesized

that explicitly modeling such seed effects would improve the

performance of algorithms such as ATARiS, that are based solely

on correlation. Indeed, DEMETER dramatically outperformed

ATARiS in our analysis of 501 cancer cell lines. Notably, in

contrast to other approaches that attempt to model RNAi seed

effects (Schmich et al., 2015), DEMETER requires no prior knowl-

edge of the off-target effects of a given shRNA; DEMETER auto-

matically identifies seed effects for any collection of shRNAs.

An alternative way to address the off-target effects of shRNA is

to use other loss-of-function approaches. Specifically, genome

editing through the use of CRISPR-Cas9 technology has

emerged as a promising complementary method to RNAi to

identify essential genes. Although CRISPR-Cas9-mediated

gene editing exhibits a high degree of specificity in gene target-

ing, we and others have recently reported that Cas9 endonu-

clease activity induces a gene-independent cell-cycle arrest,

likely due to DNA damage (Aguirre et al., 2016; Munoz et al.,

2016; Wang et al., 2015). In addition, we recently showed that

https://depmap.org/rnai
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Figure 6. Effects of Scale on the Completeness of a Cancer Dependency Map

(A) For each differential dependency with a significant predictive model, the predictive power of the best model (y axis) and its MDP class (color) along with the

strength of the dependency in the most dependent cell line (x axis).

(B) Discovery status of a curated set of 39 mutation- and expression-related dependencies in the dataset. We computed the correlations of each marker with all

the differential dependencies and categorized them as (1) discovered, (2) not concordant (3) insufficient context, or (4) no differential dependency (see STAR

Methods).

(C) Fraction of predictable 6s dependencies, summarized by the number of 6s-dependent cell lines.

(D) Results of a down-sampling analysis showing the number of 6s differential dependencies identified (y axis) in randomly sampled subsets of the screened cell

lines (x axis). The blue, orange, green, and red lines correspond to dependencies observed in at least 1, 5, 10, or 20 cell lines, respectively.

See also Table S7.
gene suppression rather than gene deletion permits the identifi-

cation of gene dependencies, such as CYCLOPS genes (Rose-

nbluh et al., 2016). Taken together, these observations suggest

that the information from CRISPR-Cas9 and RNAi screens are

complementary.

The cancer dependencies identified in these studies repre-

sent targets for therapeutic efforts. Although this initial report

allowed us to define several classes of gene dependencies,

we recognize that this approach is focused on biological pro-

cesses essential for cell-autonomous cell survival. Moreover,

we defined cancer dependencies based on cell proliferation
and survival. Future studies using analogous approaches will

be necessary to interrogate cell-cell interactions and other can-

cer phenotypes, which may expand the number and types of

cancer dependencies.

Although we identified both known and novel oncogenes,

genes that are somatically mutated and/or focally amplified

represent a minority of the cancer dependencies. Indeed,

gene expression emerged as the molecular feature that best

predicted differential dependency. Since most therapeutic tar-

geting efforts have focused on mutated oncogenes, these ef-

forts suggest that a large number of cancer targets remain to
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be tested for efficacy when targeted therapeutically. Although

defining and validating these dependencies will require sub-

stantial further validation, these observations suggest that tar-

geting these gene dependencies may allow the identification

of a larger set of cancer targets suitable for therapeutic target-

ing. Moreover, expanding these types of studies to a larger set

of cancer cell lines and phenotypes provides a path to defining a

comprehensive map of cancer dependencies as well as the

context (genetic, cell-cell interactions, etc.) that drive these

MDP relationships.

Our observations indicate that the comprehensive identifica-

tion and prediction of dependencies will require a substantial

increase in the number and diversity of cell lines analyzed (Fig-

ures 6C and 6D). Thus, we propose that a concerted, interna-

tional effort should be launched to create a definitive cancer

dependency map. Such a map would serve as a foundation

for the entire field, leading to a blueprint for targeted therapeu-

tic development, and to an acceleration of cancer precision

medicine.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal Ubiquitin Cell Signaling Cat#3936, RRID: AB_331292

Monoclonal rabbit GAPDH Cell Signaling Cat#5174, RRID: AB_10622025

Anti-mouse IR secondary antibody LICOR Cat#926-68020, RRID: AB_10706161

Anti-rabbit IR secondary antibody LICOR Cat#926-32210, RRID: AB_621842

Chemicals, Peptides, and Recombinant Proteins

Puromycin Sigma-Aldrich Cat#P9620

Blasticidin Life Technologies Cat#A11139-03

Polybrene Sigma-Aldrich Cat#H9268

RIPA Lysis Buffer Sigma-Aldrich Cat#R0278-500ML

EDTA-free Protease Inhibitor Cocktail Roche Cat#11873580001

Sodium Orthovanadate New England BioLabs Cat#P0758

Sodium Fluoride New England Biolabs Cat#P0759

MG-132 Selleck Chemicals Cat#S2619

Critical Commercial Assays

Cell Titer Glo Promega Cat#G7573

Pierce BCA assay kit Thermo Fisher Scientific Cat#23225

Thermo Fisher Superscript III First-Strand Synthesis System Thermo Fisher Scientific Cat#18080051

Power SYBR Green Master Mix Thermo Fisher Scientific Cat#4368706

Deposited Data

shRNA log fold change values for 216 cell lines screened with

54k library

(Cowley et al., 2014) https://portals.broadinstitute.org/achilles

v2.4.6

shRNA log fold change values for 285 cell lines screened with

98k library

This paper https://portals.broadinstitute.org/achilles

v2.19.2

DNA copy number assayed by Affymetrix SNP6.0 arrays (Barretina et al., 2012) https://portals.broadinstitute.org/ccle

Gene expression data for CCLE lines derived from RNaseq data This paper https://portals.broadinstitute.org/ccle

Mutation calls for CCLE lines derived from RNaseq data This paper https://portals.broadinstitute.org/ccle

DEMETER gene solutions This paper https://depmap.org/rnai

DEMETER seed solutions This paper https://depmap.org/rnai

shRNA performance scores This paper https://depmap.org/rnai

List of transcription factors (Vaquerizas et al., 2009) https://doi.org/10.1038/nrg2538

Table S2

List of druggable genes from DGIDB (Wagner et al., 2016) http://dgidb.genome.wustl.edu/

List of druggable genes from IUPHAR/BPS Guide to

PHARMACOLOGY

(Southan et al., 2016) http://www.guidetopharmacology.org/

Protein classifications from PantherDB (Mi et al., 2016) http://www.pantherdb.org/

Experimental Models: Cell Lines

See Table S1 for a list of cell lines N/A N/A

Oligonucleotides

Sequencing Primer (50 with barcode) AATGATACGGCGACCAC

CGACCGTAACTTGAAAGTATTTCGATTTCTTGGCTTTATATAT

CNNNNNNAAAGG*A*C

(Cowley et al., 2014) N/A

Sequencing Primer (30) (Cowley et al., 2014) N/A

CAAGCAGAAGACGGCATACGAGCTCTTCCGATCTTGTGGATG

AATACTGCCATTTGTCTC

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Custom sequencing Primer (Cowley et al., 2014) N/A

GAGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGA

PCR UBB Forward GGTCCTGCGTCTGAGAGGT This paper N/A

PCR UBB Reverse This paper N/A

GCCTTCACATTTTCGATGGTGT

PCR UBC Forward This paper N/A

GGAGCCGAGTGACACCATTG

PCR UBC Reverse This paper N/A

CAGGGTACGACCATCTTCCAG

PCR ACTB Forward (Brenner et al., 2011) N/A

CGCGAGAAGATGACCCAGAT

PCR 2 ACTB Reverse (Brenner et al., 2011) N/A

GAGTCCATCACGATGCCAGT

Recombinant DNA

psPAX2 Didier Trono Addgene 12260

pCMV-VSVG (Stewart et al., 2003) Addgene 8454

pLKO_047 (GFP expressing only) GPP, Broad Institute pLKO_047

pLKO_TRC005 GPP, Broad Institute pLKO_TRC005

pLKO_TRC005-nullT GPP, Broad Institute TRCN0000241923

pLX-TRC304-UBB(Ubiquitin-V5) GPP, Broad Institute ccsbBroad304_14873

shUBB-1 GPP, Broad Institute TRCN0000011102

shUBB-2 GPP, Broad Institute TRCN0000007735

shUBC-1 GPP, Broad Institute TRCN0000011109,

TRCN0000011107

hUBC-3 GPP, Broad Institute TRCN0000011111

shUBC-4 GPP, Broad Institute TRCN0000011110

shUBC-5 GPP, Broad Institute TRCN0000423348

shUBC-6 GPP, Broad Institute TRCN0000426019

shUBC-7 GPP, Broad Institute TRCN0000011108

shPSMD2 GPP, Broad Institute TRCN0000066072

C911-shUBC-1 This paper N/A

CGAGAACCAGAAAGCAAAGAT

C911-shUBC-3 This paper N/A

GAGGTTGTAGTTTGCCGGAAA

C911-shUBC-4 This paper N/A

AGGTTGAAGATTGCTGGGAAA

C911-shUBC-7 This paper N/A

GCAAAGAAGGAAGACAAGGAA

shGFP GPP, Broad Institute TRCN0000072181

shLuciferase GPP, Broad Institute TRCN0000072256

shRFP GPP, Broad Institute TRCN0000072209

Software and Algorithms

DEMETER This paper https://github.com/cancerdatasci/demeter

ATLANTIS This paper https://github.com/cancerdatasci/atlantis
CONTACT FOR REAGENTS AND RESOURCE SHARING

As Lead Contact, William Hahn (william_hahn@dfci.harvard.edu) is responsible for all reagent and resource requests.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
Cell lines were obtained from the Cancer Cell Line Encyclopedia (https://portals.broadinstitute.org/ccle/home) unless otherwise

indicated. Cell line information, including source is listed in Table S1. Information on tissue, tumor type and growth media conditions,

(used to grow the cells and also for screening) were obtained from the CCLE project or source laboratory and are listed in Table S1. All

cell lines were fingerprinted multiple times using one of two genotyping platforms, Sequenom or Fluidigm.

METHODS DETAILS

Screening and deconvolution using next-generation sequencing
We extended our previous study of 216 cell lines (Cowley et al., 2014) by performing genome-wide pooled loss of function screening

on additional 285 cancer cell lines across approximately 100k shRNAs (final files include 107,523 shRNA values in Achilles_v2.19.2 to

produce 17,098 DEMETER gene solutions in Achilles_v2.20.2). Each cell line was infected with the shRNA pool by lentivirus, in

quadruplicate and propagated for at least 16 population doublings or 40 days, whichever came first. To determine the viral volume

needed to achieve the desired transduction rate of �40%, each cell line was titrated with 6 volumes of virus (0-500 uL) in a 12 well

plate at a concentration of 3E6 cells/well. Then cells were cultured in the presence or absence of puromycin in 6 well dishes before

infection rates were determined. Cells were expanded for infection in quadruplicate with a target of 3.7E7 infected cells. Before infec-

tion, cells were filtered through a 40 um cell strainer to remove clumps, then resuspended inmedia containing 4 ug/ml polybrene, and

the appropriate volume of 98K library lentivirus to achieve a cell concentration of 1.5E6 cells/ml. This cell suspension was seeded into

12 well plates at 2 mL/well and centrifuged for 2 hr at 930xg at 30�C. After the spin infection, 2 mL of fresh media was added to each

well. After 24 hr, the cells from each replicate infection were pooled into T225 flasks with 60ml medium containing puromycin. To

provide an in-line assessment of transduction rate, 150k of infected and uninfected cells were cultured in 6 well dishes in the pres-

ence or absence of puromycin. After 96 hr, both the in-line assay wells and the screen replicates were trypsinized. The infection rate

was determined by calculating the number of viable cells selected in puromycin divided by the number of viable cells without puro-

mycin selection.

Screening was continued if the infection rates were within the range of 30%–65% so that the selected cells were nearly all MOI = 1

and so that there was a sufficient number of cells to provide adequate representation of each shRNA. For each of the replicates, 6E7

cells were plated into new T225 flasks in 60ml ofmedia with puromycin. For the remaining passages, only 3E7 cells per replicate were

carried over, and the remaining cells were spun down and resuspended in PBS for genomic DNA isolation. Passaging for each cell

line was continued for at least 16 population doublings or 28 days, whichever was longer. Puromycin selection was maintained until

day 7. At the end of passaging, genomic DNA from the screen endpoints were used to measure the abundance of shRNAs in com-

parison to the initial DNA plasmid pool. Samples were sequenced using a custom sequencing primer using standard Illumina con-

ditions. Deconvolution was performed similar to that described in Ashton et al. (Ashton et al., 2012) and all steps are described more

completely in Cowley et al. (Cowley et al., 2014), with the following alterations. A total of 280 mg gDNA was used as template for PCR

from each replicate. Thermal cycler PCR conditions consisted of heating samples to 95 �C for 5 min; 28 cycles of 94 �C for 30 s,

53 �C for 30 s, and 72 �C for 20 s; and 72 �C for 10 min. PCR reactions were then pooled per sample. After PCR and additional of

sample barcodes, 20 replicates were multiplexed into a single Illumina sample, and run on multiple lanes to achieve a minimum

of 27 reads per replicate. PCR sequences are listed in Key Resources Table. Cell line specific information is listed in Table S1.

Cell doubling time was calculated from the lentivirally infected cells during the course of the screens. Days in culture represent

the days from the day of infection until the date of the harvest. Passage number represents the number of cell splits during during

the screen and refer to the time point of the sample that was used for data collection specific to each cell line.

Cloning of C911 shRNAs
C911 shRNAs were designed by changing the nucleotides at positions 9 through 11 of the corresponding experimental shRNA to

their complement base and appending an AgeI recognition site at the 50 end and an EcoRI recognition site at the 30 end with appro-

priate overhang sequences. Oligonucleotides were purchased from Integrated DNA Technologies. Complementary oligos were an-

nealed and ligated to the pLKO_TRC005 vector cut with restriction enzymes AgeI and EcoRI. Ligation products were transformed into

DH5a chemically competent cells (Invitrogen) according to manufacturer’s instructions and plated on agar plates containing 100ug/

mL carbenicillin incubated for 16 hr at 37�C. Single colonies were used for DNA preparation (QIAGEN). All clones were verified by

sequencing.

Viral production
293T cells were seeded in 96 well plates at 2.2*104 per well (100uL volume) 24 hr pre-transfection. Transfection was performed using

TransIT-LTI Transfection Reagent (Mirus). Briefly, two solutions were prepared in different 96-well plates for each construct. One so-

lution contained 0.6uL of LT1 diluted in 10uL of Opti-Mem (Corning) for each well incubated at room temperature for 5 min. For the

second solution, a master mix that contained 100ng/well psPAX2 (Addgene 12260), 10ng/well pCMV-VSVG (Addgene 8454), and

Opti-MEM for a total volume of 10uL/well was added to a plate that contained 100ng of the transfer vector diluted in 10uL of sterile
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water. The two final solutions were combined and incubated at room temperature for 30 min. The transfection mixture was then

added to the plate of cells and incubated at standard cell culture conditions (37�C, 5% CO2) until the following morning. At least

18 hr post transfection, media on the cells was changed to 170uL high-BSA growth media (DMEM + 10% FBS + 1% BSA). Virus

was harvested 24 hr after the media change, the media was replenished, and a second harvest occurred at 48 hr after the media

change. Virus from both harvests was pooled, aliquoted, and stored at �80�C until use in the experiments.

GFP competition assay
All infections were performed by centrifuging freshly seeded plates containing cells with lentiviral particles and 4mg/mL polybrene for

two hours at 2000 rpm.

Cell lines stably expressing GFP were generated using a lentiviral expression vector (pLKO_047). shRNAs were introduced to non-

GFP expressing cells in duplicate and selected for 2-3 days with 3-6mg/ml of puromycin before starting the co-culture. Co-cultures

were created by mixing GFP expressing cells with shRNA-infected non-GFP cells at a ratio of 75 GFP negative to 25 GFP positive.

Time-points quantifying the ratio of GFP to non-GFP population were taken using flow cytometry (BD Biosciences BD Accuri C6)

each time the co-culture was split (every three to four days) for 9-12 days post selection. Log2 fold change of percentage GFP nega-

tive cells remaining for each experimental construct compared to the average of the percentage GFP negative in negative controls

(pLKO_TRC005-nullT, shGFP, shRFP, shLuciferase) was calculated for each time point. Since different cell lines grow at different

rates, for comparison between cell lines the time-point of maximal depletion (median of shUBC-1, 3 and 7) was selected per cell

line. Results are representative of two independent experiments.

UBB rescue experiments
An exogenous ORF fragment from UBB (NM_018955.3, 844-1083) encoding for ubiquitin-V5 (ccsbBroad304_14873) was overex-

pressed in SNU8 cells using lentivirus. Ubiquitin overexpressing or parental cells were seeded in a 96-well plate at 1000 cells/well

and infected on the same day with lentivirus expressing shUBC, shGFP, shPSMD2, shRPS6 or pLKO_TRC005 nullT in individual

wells. Viability was measured 24h after infection and every 48h over a 7 day time-course using CellTiterGlo (Promega) on a Perkin

Elmer EnVision. Three separate infection replicates were used for each time point. Average raw luminescent signal for each condition

was normalized to the average of the pLKO_TRC005 nullT signal. Fold-change to day 1 was calculated from the normalized signal.

Data are representative of two independent experiments.

Western Blots
Cells were infected with lentivirus expressing shUBC-3, shUBC-7, or pLKO_TRC005 nullT and selected with puromycin at a concentra-

tion of 4ug/mL for 48-72hr or until all uninfected cells were dead. Cells were stored as pellets at�80�C. MG-132 treated samples were

incubatedwith 50mMMG-132 for 2 hr prior to harvest.Whole cell lysateswere prepared usingRIPA buffer (Sigma-Aldrich) supplemented

with EDTA-free Protease Inhibitor Cocktail (Roche), 1mMSodiumOrthovanadate (NEB), and 5mMSodium Fluoride (NEB). Protein levels

were quantified using the Pierce BCA assay kit (Thermo Fisher Scientific #23225). Immunoblots were run using 4%–12% Bis-Tris Pre-

Cast gels (Thermo Fisher Scientific NuPAGE Novex #NP0335) and transferred to a membrane using the iBlot 2 system (Thermo Fisher

Scientific). Ubiquitin levels were detected using a monoclonal mouse anti-Ubiquitin Antibody at 1:1000 dilution (Cell Signaling P4D1

#3936) and a LICOR-compatible anti-mouse IR secondary antibody (LICOR #926-68020) at 1:5000 dilution. GAPDH levels were de-

tected using a monoclonal rabbit GAPDH antibody (Cell Signaling 14C10 #2118) at 1:1000 and a LICOR-compatible anti-rabbit IR sec-

ondary antibody (#926-32211) at 1:5000 dilution. Western blots shown are representative of two independent experiments.

RT-PCR
COV434 cells were infected with lentivirus expressing shRNAs targeting UBB, UBC or shLuciferase and selected with puromycin at a

concentration of 4ug/mL for 48 hr. Cells were stored as pellets at �80�C. Total RNA was isolated using QIAGEN RNeasy Plus Mini

Kits (QIAGEN #74134). Reverse transcription for RNA samples was performed using Thermo Fisher Superscript III First-Strand Syn-

thesis System (Thermo Fisher #18080-051). RT-PCR was performed on the QuantStudio 6 Flex (Applied Biosystems) using Thermo

Fisher Power SYBR Green Master Mix (Thermo Fisher # 4367659) with probes against UBB, UBC and Actin (See Key Resources

Table). Each measurement was taken in triplicate. Comparative CT (Delta Delta CT) was used for quantification analysis. Actin

was used as reference for normalization. Results are representative of two independent experiments.

DEMETER
The main goal of DEMETER is to infer gene knockdown viability effects (‘‘gene dependency scores’’) for each gene and cell line

screened by an shRNA (or siRNA) library containing multiple reagents designed to target the same gene. Given the observed pheno-

typic effects produced by shRNAs and knowledge of which shRNAs share a common ‘seed sequence’ and which target a common

gene, DEMETER deconvolves the effects of each shRNA into a linear combination of the effects due to knockdown of the target gene

and the effects associated with the seed sequence. In addition, we expect a batch effect due to variation in the initial abundance of

shRNA in each library. We remove that batch effect by modeling those gene and seed effects as relative to the mean for each batch.

We assign two seed sequences to each shRNA – positions 1-7 and 2-8 on the antisense strand (corresponding to positions 12-18

and 11-17 on the sense strand). These two regions were chosen as those that maximized intra-group correlation of fold-change
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depletion when grouping the shRNAs by any 7-mer subsequence (Figure S1C). The seed sequences present in shRNA i are denoted

as seedðiÞ. Similarly, we assign one or more genes targeted by each shRNA by aligning the sequence to the reference genome. The

genes targeted by shRNA i are denoted as geneðiÞ.
Given a dataset consisting of p shRNAs and n cell lines, we define an observation matrix H, where each element Hij represents the

readout resulting from perturbing cell line j ðj = 1;2;.;nÞ by shRNA i ði = 1; 2;.;pÞ. We decomposeHij into,Glj, the effect of knocking

down gene l in cell line j, and Skj, the effect of an shRNA with seed k on cell line j. Both effects are relative to the mean readout for

shRNA i within each batch bj; denoted as mibj
. Relative effects were sufficient because we focused on discovering differential depen-

dencies. Non-differential dependencies have the potential to be generally essential and non-selective.

Formally, the DEMETER model for each observed data point Hij is defined as:

Hij =
X

k˛seedðiÞ
aikSkj +

X
l˛geneðiÞ

bilGlj +mibj
+ ε
subject to
0%aik ; bil%1
In addition to the effects discussed above, the coefficients aik an
d bil scale the seed effect, Skj, of seed k on cell line j and the gene

effect, Glj, of gene l on cell line j for the specific shRNA i.

We only fit gene, Gkj; and seed effects, Skj, supported by two or more measurements. We explicitly remove those corresponding

Gkj and Skj terms from the objective function that are only used to compute a single Hij. This can occur when a gene or seed is sup-

ported by a single shRNA or when all but one shRNA for that gene in the cell line are missing values. Additionally,Hmay havemissing

values for an shRNA across all cell lines screened in a particular library due to that shRNA being only included in another library.

After all parameters have been fit, we make gene effects comparable to one another by dividingGlj by max
i

biljl˛geneðiÞ. Since the

objective function only includes the product of bilGlj, and not Glj we can apply an arbitrary scale to bil as long as we also divide Glj by

that scale. As a result, the scaled elements in b can be thought of as the strength of the gene effect relative to the shRNA with the

strongest gene effect.

The objective function

To fit the parameters for this model, we formulate the following optimization problem:

min
S;G;a;b;m

X
ij

�
Hij � bHij

�2
+preg +pcon
where bHij is the prediction of the effect of perturbing cell line j by
 reagent i:bHij =
X

k˛seedðiÞ
aikSkj +

X
l˛geneðiÞ

bilGlj +mibj
We regularize the model parameters by the penalty preg:
preg = ls
X
kj

ðSkjÞ2 + lg
X
kj

ðGkjÞ2 + la
X
ik

ðaikÞ2 + lb
X
il

ðbilÞ2
and penalize by p to enforce constraints aR0 ;bR0.
con

pcon = � lp
X
i

minð0;aiÞ � lp
X
i

minð0; biÞ
Stochastic gradient descent was used to minimize the objective
 function.

Initial solution for gradient descent

To determine the initial parameter values fromwhich the gradient descent starts, we compute mb as themean of all measurements for

cell lines in batch b.

mib = mean
j

Hij

���� j˛b

Then, S and G are computed as the marginal means of H after su
btracting mbj

where mbj
is the mean for the batch that contains cell

line j.

Skj = mean
i

Hij � mibj
jk˛seedðiÞ
And
Glj = mean
k

Hij � mibj
jl˛geneðiÞ
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Finally, to determine an initial a and b, we fit the linear model for
 each shRNA i across all cell lines:

Hij �
X

k˛seedðiÞ
aikSkj +

X
l˛geneðiÞ

bilGlj +mibj

Update step for stochastic gradient descent

Computing the gradient for a given Hij we get:

ε=Hij � bHij
�

VGki

= 2 lgGki � ebik

�

VSki

= 2ðlsSki � eaikÞ
Vaik = 2ðlaaik � eSkiÞ
Vbik = 2ð2lbbik � eGkiÞ
Vm = � 2e
We update each parameter by the gradient, scaling by a learning
 rate g:

xn+ 1 = xn � gVx
We iterate through the elementsH in randomorder, performing th
ij e update for each element.We chose a learning rate of g= 0:005 for

all parameters. To strongly discourage constraint violations we set lp = 10. To choose the remaining hyperparameters, we randomly

sampled parameters, and chooses those that minimized the mean out-of-sample RMSE based on three rounds of cross validation,

where 1% of the elements inHij are held out in each round. After the hyperparameters were chosen, we re-ran DEMETER on all of the

data, iterating through the elements in Hij the same number of passes required to achieve the minimum out-of-sample RMSE during

the cross-validation procedure.

Assessing shRNA performance
We assess individual shRNA performance by looking at the variance explained by the contribution of the gene effect and seed effect

per shRNA. We computed the variance explained, R2ðy; fÞ= 1�
P

i
ðyi�fiÞ2P

i
ðyi�yiÞ2

, using only the contribution of the seed or gene to predict

the observed values. That is to say sc and gc, the shRNA’s seed effect and gene effect contribution respectively were computed as:

sc = R2

 
Hij;

XseedðiÞ
k

akjSki +mibj

!
; gc = R2

 
Hij;

XgeneðiÞ
k

bikGkj +mibj

!

Data processing pipeline
Raw Illumina reads were normalized across replicates to alleviate the variable read depth of each replicate. Normalized shRNA

value = log2([(Raw read value for shRNA)/(Total raw read value for replicate) x 1e6] +1). Normalized and log2 transformed read counts

were processed in a GenePattern pipeline separately each shRNA library dataset, starting with modules that remove undesirable

shRNAs and failing QC replicate samples (‘FilterLowshRNAs’, ‘shRNAremoveOverlap’ and ‘removeSamples’). Fold change values

are next calculated (‘shRNAfoldChange’) using an appropriate pDNA reference sample, based on both shRNA library (55k, 98k)

and sequencing chemistry kits (cBotV7/sbsv2, cBOTv8/sbsv3) and then quantile normalized per replicate cell line (‘NormLines’).

Replicate cell lines values are then collapsed (‘shRNAcollapseReps’) and shRNAs are mapped to the newest gene transcriptome

mapping / HUGO gene symbols (‘shRNAmapGenes’). The previous 55k library data (Achilles_2.4.3, (Cowley et al., 2014)) was

also remapped using these newest genemappings and subsequently renamed Achilles_v2.4.6. Gene summarization was performed

using the DEMETER algorithm (next section), which also combined the data from each shRNA library dataset (55k library: Achil-

les_v2.4.6, 216 cell lines and 98k library: Achilles_v2.19.2, 285 cell lines) to produce the final gene level data (Achilles_v2.20.2,

501 cell lines). All steps, including quality control steps and sample fingerprinting are described in detail in Cowley et al. (Cowley

et al., 2014) andGPmodules are available from theGenePattern Archive: http://gparc.org/. Data can be downloaded from the Project

Achilles Portal (https://portals.broadinstitute.org/achilles).
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Applying DEMETER to 501 RNAi screens
DEMETER was run separately on the Achilles data divided into three batches: the Achilles v2.4.6 lines divided into a batch for cell

lines processed with cBotV7/sbsv2 kits and a batch for the cBOTv8/sbsv3 kit, and a final batch containing all of the lines comprising

Achilles v2.19.2.

Sixty-five shRNAs, those targeting more than 10 genes, were removed because we suspected the interactions would be too com-

plex to derive meaningful information from those shRNAs. Those shRNAs whose gene label starts with ‘‘NO_CURRENT’’ are not

known to target any gene, but are present in the library due to the reference genome changing after the library was designed.

Even without a targeted gene, these shRNAs were included because they contributed to the estimation of seed effects.

A pair of genes targeted by identical shRNAs cannot be distinguished from one another and left untreated would result in half of the

total gene effect being attributed each gene. Therefore, we created a ‘‘gene family’’ for which the total effect is derived. Overall, 399

genes were collapsed into 172 such families. After the deconvolution was complete, the estimated effect for a gene family was re-

ported for each gene in the family.

Next, hyperparameter optimization was performed by random search and la = lb = 0:9 and lg = ls = 4e� 5 were chosen. These pa-

rameters achieved a mean out-of-sample RMSE of 0.67 and in-sample RMSE of 0.53.

Afterward, DEMETERwas run on the full data, without holding any data out, resulted in an in-sample RMSE of 0.54. DEMETER next

transformed elements in G into z-scores using the global mean and standard deviation of G. The final set of z-scores values was

obtained after expanding the gene families and removing the records corresponding to labels prefixed with ‘‘NO_CURRENT.’’ In

addition, performance metrics for each shRNA are summarized in table S2.

Benchmarking DEMETER against ATARiS
In comparing the performance of DEMETER and ATARiS, we limited ourselves to data which could be processed by both methods.

ATARiS does not support multiple batches, so we only used data from largest batch, the Achilles 98k library containing 285 cell lines.

Also, ATARiS does not produce a gene solution for every gene, so we limited ourselves to the 9,348 genes that had a solution from

ATARiS. If ATARiS produced multiple solutions, only the first solution was considered.

We assume that knocking down genes participating in the same protein complex should be enriched for similar dependency pro-

files. The CORUM database was used to to associate 2,505 genes with 1,749 protein complexes. Separately for ATARiS and

DEMETER, we computed the distribution of Pearson correlation coefficients between pairs of profiles from genes that participated

in the same protein complex. Then, to compare the two distributions, we normalized by z-scoring the correlations, using the standard

deviation from the distribution of correlations between random pairs of profiles (fig. S1A).

Correlation of dependency profiles (Figures 1E-G and S1B)
Pearson correlations of DEMETER gene dependency scores were computed across cell lines (N = 501) for all pairs of variable genes

that share overlap in cell lines (N = 6,300). The resulting gene similarity matrix was converted to a discrete adjacency matrix by con-

verting correlation coefficients to standard scores and adding edges only between pairs of genes with standard scores R 3. The

networks in Figures 1E-G show the connected neighbors of a selected gene. The heatmap in Figure 1E showsDEMETERgene scores

as colors/values, but only genes connected to PIK3CA in the adjacency matrix are shown and ordered by decreasing correlation

coefficient.

Differential dependencies and 6s dependencies
The 17,098 unique genes in the DEMETER dataset were filtered for genes for which at least one cell line’s dependency score is�2 or

below and expression of the gene in the most dependent cell line is above –2 log2 RPKM, resulting in 6,305 dependency profiles rep-

resenting potential differential dependencies. Of these, 6s dependencies were defined as genes where at least one cell line is depen-

dent on them at a level of six ‘‘global’’ standard deviations (i.e., computed using scores for all genes in all cell lines) from the mean of

each gene. This resulted in 769 6s dependencies.

RNASeq
Library construction and sequencing

RNA sequencing: library construction and sequencing Non-strand specific RNA sequencing was performed using large-scale, auto-

mated variant of the Illumina TruSeq RNA Sample Preparation protocol. Oligo dT beads were used to select polyadenylated mRNA.

The selected RNA was then heat fragmented and randomly primed before cDNA synthesis. To maximize power to detect fusions

insert size of fragments was set to 400nt. The resultant cDNA then went through Illumina library preparation (end-repair, base

‘A’ addition, adaptor ligation, and enrichment) using Broad designed indexed adapters for multiplexing. Sequencing was performed

on the Illumina HiSeq 2000 or HiSeq 2500 instruments, with sequence coverage of no less than 100 million paired 101 nucleotides-

long reads per sample.

Expression data analysis

RNaseq reads were aligned to the B37 version of human genome using TopHat version 1.4. Gene and exon-level RPKM values were

calculated using pipeline developed for the GTEx project (https://gtexportal.org/home/, (DeLuca et al., 2012)).
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Calling substitutions

Variant calling and annotation: Nucleotide substitutions were detected with MuTect (Cibulskis et al., 2013) (http://www.

broadinstitute.org/cancer/cga/MuTect). MuTect program was run in the mode that does not require matching normal DNA and

thus identifies all variants that differ from a reference genome. Variants were annotated using the Oncotator (Ramos et al., 2015)

and AnnoVar software (Wang et al., 2010) (http://annovar.openbioinformatics.org).

Variant filtration

The allelic fraction was calculated for each detected variant per cell line as a fraction of reads that supported an alternative allele (e.g.,

different from the reference) among reads overlapping the position. Only reads with allelic fractions above 0.25 were used in the

downstream sensitivity prediction analysis.

Variant filtration by exclusion of common germline variants: Variants for which the global allele frequency (GAF) in dbSNP134 or

allele frequency in the NHLBI Exome Sequencing Project (http://evs.gs.washington.edu/EVS, data release ESP2500) was higher

than 0.1% were excluded from further analysis.

Variant filtration by exclusion of variants observed in a panel of normals: Variants detected in a panel of 278 whole exomes

sequenced at the Broad as part of the 1000 Genomes Project were excluded from further analysis. Beyond removal of additional

germline variation, this step also allowed elimination of common false positives that originate predominantly from alignment artifacts.

Calling indels

For indel calling RNASeq data were realigned using STAR (Dobin et al., 2013) and indels were called using Strelka (Saunders

et al., 2012).

ATLANTIS
We developed ATLANTIS, a nonlinear regression modeling method, to find molecular markers that are predictive of DEMETER de-

pendency scores. The predictive features were derived from CCLE’s molecular characterization of the cell lines and the target

learned was the dependency scores reported by DEMETER. ATLANTIS, our tool for finding and characterizing predictive

biomarker-dependency models uses the R package ‘‘party’’ to build an ensemble of conditional inference (Strobl et al., 2008).

This method was chosen for its ability to capture nonlinear relationships, accommodating both categorical and continuous features

in the same model, and its ability to accommodate missing values.

After learning a model with ATLANTIS, we record the out-of-bag weighted R2 as the goodness-of-fit metric. We next prune the

feature list used by that model to present a shorter list of candidate biomarkers. First, we compute the variable importance using

the party package’s ‘‘varImp’’ function for each feature used in the model. To prune poorly chosen features, we drop any features

whose variable importance was either negative or absolute variable importance was in the bottom 0.01 quantile. We then train a

new model, using only those features remaining, and again do another round of pruning dropping only features with a negative var-

iable importance. The remaining features are reported along with their final variable importance in the ATLANTIS reports.

Compensating for few dependent lines

We were most interested in ATLANTIS capturing the difference between dependent and insensitive lines. However, it was difficult to

model as a classification problemwhen we did have a clear threshold on dependency score which we could use to define the depen-

dent and insensitive classes. Also, there may be times where we might be able to predict the variance in the sensitive class, so we

opted to instead keep it as a regression problem, but refer to lines whose z-scored dependency score is less than �2 as ‘‘depen-

dent.’’ At �2 standard deviations from the mean, we may have some lines that are within the noise around the mean and not truly

dependent, but we expect those lines are at least enriched for truly dependent lines.

The dependent lines were a small fraction of the lines assayed for each gene, but were demonstrating the behavior we wanted to

predict. To encourage the model to distinguish between ‘‘dependent’’ and ‘‘nondependent’’ lines, we biased the sampling when se-

lecting samples to build each tree to enrich for dependent lines. First, we sampled the potentially dependent lines, those with a de-

pendency score < �2, picking each with a probability of 80%. Then the remaining samples were uniformly sampled from the non-

dependent lines. Even after biasing the sampling, the ‘‘dependent’’ lines were far fewer than ‘‘nondependent’’ lines in the training

set for each tree, so we used non-uniformweighting tomake the two classesmore balanced.Weights for each sample were assigned

to the dependent and the non-dependent cell lines such that the sum of weights were equal for both classes, but capping the

maximum weight of any one line at 5%.

To improve runtime and avoid pathological splits, the smallest bucket the tree was allowed to be three times the weight of a single

dependent line. For each model, we removed any features consisting of a single distinct value for all, or all but one of the cell lines. In

addition, we dropped any cell lines missing values for all features. Once this pre-filtering was complete, the decision tree ensemble

was constructed by the ‘‘cforest’’ method in the ‘‘party’’ R package.

We assessed the goodness-of-fit of each model by computing the square of the out-of-bag weighted Pearson correlation coeffi-

cient. However, any model with a negative weighted correlation was given a score of 0. To compute p values testing whether the

model’s goodness-of-fit could have arisen by chance, a global null distribution was computed by 50k iterations of selecting a random

gene, shuffling the dependency scores, and fitting and scoring a model with the procedure described above. Finally, to correct for

multiple hypothesis testing, q-values were computed from the p values across all models fit for a given MDP class via Benjamini &

Hochberg’s method.
e8 Cell 170, 564–576.e1–e10, July 27, 2017

http://www.broadinstitute.org/cancer/cga/MuTect
http://www.broadinstitute.org/cancer/cga/MuTect
http://annovar.openbioinformatics.org
http://evs.gs.washington.edu/EVS


Identifying dependency classes (Table S6)
Mutation-driven dependencies

To identify putative oncogene addictions, we considered any hotspot mutations, missense mutations, and the copy number of the

gene whose sensitivity we were modeling. Those genes whose model had the best biomarker negatively correlated with the depen-

dency scorewere classified as putative oncogene addictions. To avoid ATLANTISmodeling any of the variation in the non-dependent

portion of the distribution, we additionally generated a second model based on replacing all sensitivities > �2 with zero. In addition,

we enforced that each tree could only threshold on a feature at most once per leaf to only capture behavior for extremes of a feature,

and avoid modeling a prediction for an interval of a feature.

We note that many p53 wild-type cell lines gain a growth advantage following TP53 suppression, leading TP53 to be identified as a

mutation-driven dependency (as mutated cell lines show stronger ‘‘dependency’’ compared to wild-type ones). We have therefore

manually excluded TP53 from this MDP class.

Expression-driven dependencies

The same method was used to identify gene addictions, with the exception that also gene expression was considered as a potential

predictive feature. Those models that also had the strongest biomarker negatively correlated with the dependency score were clas-

sified as gene addictions.

CYCLOPS

For CYCLOPS, the gene expression and copy number of the modeled gene were used as predictive features. We continued to

only allow a single split per feature, but only ran ATLANTIS once, predicting the gene’s dependency scores. Among those

models, those where the best biomarker was positively correlated with the dependency score prediction were classified as

CYCLOPS.

Paralog deficiency dependencies

To identify instances where a gene dependency emerges due to loss of function of a paralogous gene, we run ATLANTIS using

missense and damaging mutations, copy number and gene expression of all genes which were reported as sequence paralogs

by GenesLikeMe. Again, here we produce two models, one with the original dependency data and one with values > �2 replaced

with zero.

We note that RPL17 and RPL17-C18orf32 were identified as a paralog deficiency pair but they in fact represent the same gene and

hence we manually excluded them from this MDP class.

Related features

The ‘‘related’’ MDPmodels were trained by limiting the features based on the gene whose dependency we were trying to predict. For

each dependency being predicted, we limit the features only those of genes which were either reported as having a protein-protein

interaction according to InWeb with a confidence score greater than 0.1 (Lage et al., 2008; Lage et al., 2007), associated with one

another according to GenesLikeMe with a super-pathway score greater than 0.3 (Stelzer et al., 2016), or any gene which shares a

complexes with the dependent gene according to CORUM (Ruepp et al., 2010).

We note that the dependency profile of MAP4K4 was removed from these analyses as we found it to suffer from strong off-target

(non-seed-based) effects, causing it to mimic the profile of NRAS.

Table summarizing the definitions of the MDP classes
Features Models predict

Mutation-driven

dependencies

Hotspot mutations, One model predicts z-scored sensitivity.

Missense mutations, One model predicts z-scored sensitivity where

values > �2 are replaced with zero

Copy number

Expression-driven

dependencies

Hotspot mutations, One model predicts z-scored sensitivity.

Missense mutations, One model predicts z-scored sensitivity where

values > �2 are replaced with zero

Copy number,

Gene expression

CYCLOPS Copy number, Gene expression One model predicts z-scored sensitivity.

Paralog deficiency

dependencies

Missense and damaging mutations, Copy number and

Gene expression of all sequence paralog genes.

One model predicts z-scored sensitivity.

One model predicts z-scored sensitivity where

values > �2 are replaced with zero

Related Missense and damaging mutations, Copy number and

Gene expression of associated genes via PPI, CORUM

or GenesLikeMe’s super-pathways.

One model predicts z-scored sensitivity.

One model predicts z-scored sensitivity where

values > �2 are replaced with zero
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Mutation enrichment analysis in mutation-driven dependencies (related to Table S5)

For each gene identified as a potential differential dependency (N = 6,305), cell lines were split into two groups, MUT and WT, based

on presence or absence of an RNA missense mutation in the gene. Enrichment p values were calculated by further splitting the MUT

and WT groups into dependent and non-dependent groups by discretizing the DEMETER gene scores at a particular threshold and

performing a one-sided Fisher Exact test. Instead of using a single threshold of �2, as was done with the lineage enrichment of TF

dependencies, a Fisher exact test was performed using the DEMETER score of each MUT cell line, �2 or below, as the dependency

threshold. The multiple p values that result per gene from this process were Bonferroni corrected and the most negative threshold

with p < 0.001 was selected to represent the gene.

A global null was built by performing 10 million permutations of cell line labels and compiling the minimum thresholds given the

fisher criteria for all genes. Empirical p values were determined for each gene by counting number of times the null threshold was

less than the true threshold for the gene. Empirical p values were corrected using Benjamini Hochberg method.

Lineage enrichment of transcription factor dependencies (related to Figure 4B)

For each lineage context with at least 7 cell lines (N = 20), an enrichment score was computed for dependency on each transcription

factor (TF) included in the mutation- and expression-driven MDP classes (N = 49). The enrichment score is calculated by discretizing

the DEMETER gene dependency scores (GS) for each TF into dependent (GS% �2) and non-dependent (GS > �2) cell lines. Recall

that aGS of�2 represents a dependency that is 2 standard deviationsmore dependent than themean across all the cell lines. Depen-

dent and non-dependent groups of cell lines are further split into a two-by-two contingency table based on membership in the spec-

ified lineage. p values are assigned to each (TF, lineage) pair based on one-sided Fisher’s exact tests and converted to q-values using

the Benjamini Hochberg method to correct for multiple hypothesis testing. TFs that are significantly enriched (q-value % 0.05) in a

single lineage are labeled ‘Specific’, whereas TFs that are significantly enriched in multiple lineages are labeled ‘Multiple’. The y axis

in Figure 4B is an odds ratio (OR), which is calculated as follows:
Lineage Non-lineage

Dependent a b

Non-dependent c d
OR=
a+ 0:5

c+ 0:5

�
b+ 0:5

d + 0:5

Benchmarking curated dependency-biomarker pairs (related to Figure 6B)

To determine the performance of DEMETER, a curated list of dependency-biomarker pairs was created based on literature reviews

and experimental validation. We computed the Pearson correlation coefficients for each marker with each of the 6,305 identified de-

pendency profiles. Dependencies were categorized as (1) Discovered, if the dependency scored in the top 100, (2) Not discovered, if

the dependency did not score in the top 100 and could not be explained by having insufficient context, (3) Insufficient context, if the

dependency did not score in the top 100 and themarker was amutation and there were fewer than 3 cell lines with hotspot mutations

(4) No differential dependency, if fewer than 3 cell lines with a dependency score of less than �2.

QUANTIFICATION AND STATISTICAL ANALYSIS

GFP competition assay (Figure 5D)
For each cell line (N = 7), mean fraction of GFP negative cells was calculated for UBC hairpins (shUBC: 1,3,7) and negative controls

(pLKO_TRC025-nullT, shGFP, shRFP, shLuciferase). shUBC-4was excluded from this analysis sinceDEMETERassigned a lowgene-

score. Values were converted to log2 fold-change ofmeanUBC targeting hairpins versusmean negative control and the fold-changes

were compared between UBB high expressing (N = 3) and UBB low expressing (N = 4) using a one-sided Mann-Whitney test.

UBB rescue (Figure 5E)
The log2 fold-changes for hairpins targeting UBC (excluding shUBC-4 which has low predicted on-target activity) were averaged for

each time point (Day: 1,3,5,7) and each group (parental, UBB overexpressed). A linear model was fit to the log2 fold-change response

vector using only time point as the predictor (p value = 0.1538, F-statistic). A second model was fit with the additional group variable

as a second predictive feature (p value = 0.0262, F-statistic). The additional contribution of the group variable to prediction is

measured by comparing the two models using an F-test included in R ‘stats’ package anova function (v3.2.1).

DATA AND SOFTWARE AVAILABILITY

The shRNA data generated in this study are publically available at https://portals.broadinstitute.org/achilles. All analysis results are

available at https://depmap.org/rnai, and code for DEMETER and ATLANTIS is available at https://github.com/cancerdatasci. Cell

line molecular features can be downloaded from https://portals.broadinstitute.org/ccle/. See also Key Resources Table.
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Supplemental Figures

Figure S1. Correlation Analysis for Dependency Profiles, Related to Figure 1

(A) Correlation analysis for dependency profiles of genes associated with protein complexes. Cumulative distributions of z-scored Pearson correlation co-

efficients for pairs of dependency profiles generated by ATARiS and by DEMETER. Distributions generated from pairs of dependency profiles corresponding to

proteins participating in the same complex (as annotated by the CORUM database) are in orange (ATARiS) and red (DEMETER). Those generated from random

pairs of dependency profiles are in blue (ATARiS) and green (DEMETER).

(B) Co-dependency networks for EZH2, ARID1A and ATP5O. Edges represent significant Pearson correlation (z-score > 3) between a pair of gene dependency

profiles across 501 screened lines. All genes with dependency profiles significantly correlated to the target gene’s (circled in black) are shown, with colors

representing functional classes.

(C) Correlation analysis for depletion profiles of shRNAs sharing 7-mer sequences. Correlation analysis for depletion profiles of shRNAs sharing 7-mer sequences.

Pearson correlation coefficient was computed for the depletion profiles of pairs of shRNAs sharing the same 7-mer sequence, starting at positions as indicated by

the x axis and the y axis. The color of each cell in the heatmap represents the average coefficient for all such pairs of shRNAs.



Figure S2. Predicting Dependencies from Molecular Features, Related to Figure 3

(A) Non-6s dependencies with a predictive model. The number of non-6s dependencies with predictive models built using all features (Unbiased, blue), features

of genes related to the dependency gene (Related, red) and those falling into one of the four identified dependency classes (green).

(B) FERMT2 expression levels (x axis) are plotted against FERMT3 expression levels (y axis). Hematopoietic cell lines are colored in blue, all others are in red.

(C) FERMT1 expression levels (x axis) are plotted against FERMT2 expression levels (y axis).

(D) FERMT1 dependency (x axis) is compared to FERMT2 expression levels (y axis).



Figure S3. UBC Dependency Is Predicted by Low UBB Expression Levels, Related to Figure 5

(A) MDP paralog deficiency ATLANTIS model forUBC.UBC dependency is shown frommost to least dependent cell line in columns (top panel, red to blue). Each

lower panel shows the top five predictive markers used by that model; marker values are z-scores (high to low, red to blue). Horizontal bars on the right indicate

the relative contribution to the model’s out-of-bag R2.

(legend continued on next page)



(B) UBB mRNA expression across tissues (data from GTEx).

(C) CCLE cell lines were classified as UBBhigh or UBBlow based onwhetherUBB expression was greater or less than 105. The significance of the difference onUBB

CN levels between these two classes was calculated by a two-tailed t test.

(D) UBB methylation and expression (y axis; RNaseq log2RPKM) (E) across tumors (data from TCGA).



Figure S4. UBC and UBB Are Redundant Dependencies, Related to Figure 5

(A) DEMETER gene solutions and seed solutions for UBC shRNAs.

(B) GFP viability competition assay in ovarian cell lines with the indicated C911 shRNA controls for UBC shRNAs. Data represent log2 fold change compared to

the average shRNAs negative controls.

(C) Expression levels ofUBC orUBB in COV434 cells upon suppression of UBC expression with the indicated shRNAs or a control shRNA (shLuc). Data represent

fold change relative to shLuc and error bars represent standard deviation of 3 technical replicates.

(D) CCLE cell lines classified as UBBhigh or UBBlow based on whether UBB expression was greater or less than 105. The significance of the difference in UBC

expression levels between these two classes was calculated by a two-tailed t test.

(E) Time course of relative viability upon PSMD2 suppression with or without ectopic expression of monoubiquitin (UBB) in a UBBlow cell line (SNU8). Data

represent fold change relative to day 1 normalized to pLKO_TRC005 nullT. Error bars represent SD.

(F) Levels of conjugated ubiquitin upon UBC suppression in a UBBlow (JHOC5) and a UBBhigh (COV434) cell line.



Figure S5. Summary of Differential Dependencies by MDP Class, Related to Figure 6

(A–F) For each differential dependency with a significant predictive model, the model’s predictive power (y axis) and the strength of the dependency in the most

dependent cell line (x axis) are indicated. MDP classes shown: (A) mutation-drive, (B) expression-driven, (C) CYCLOPS, (D) Paralog deficiency, (E) related

features, and (F) unbiased (all) features.
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