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SUMMARY

Elucidationof themutational landscapeofhumancan-
cer has progressed rapidly and been accompanied
by the development of therapeutics targeting mutant
oncogenes. However, a comprehensive mapping of
cancer dependencies has lagged behind and the dis-
covery of therapeutic targets for counteracting tumor
suppressorgene loss isneeded.To identifyvulnerabil-
ities relevant tospecificcancer subtypes,weconduct-
ed a large-scale RNAi screen in which viability effects
of mRNA knockdown were assessed for 7,837 genes
using an average of 20 shRNAsper gene in 398 cancer
cell lines.Wedescribefindingsof this screen, outlining
the classes of cancer dependency genes and their
relationships to genetic, expression, and lineage
features. Inaddition,wedescribe robustgene-interac-
tion networks recapitulating both protein complexes
and functional cooperation among complexes and
pathways. This dataset alongwith a web portal is pro-
vided to the community to assist in the discovery and
translation of new therapeutic approaches for cancer.

INTRODUCTION

Enabled by large-scale sequencing projects (Weinstein et al.,

2013; Hudson et al., 2010), a detailed map of the nucleotide-
and chromosomal-level alterations comprising the disordered

cancer genome has been provided. In concert, targeted ther-

apeutics are now mainstays of therapy in melanoma, NSCLC,

CML, and GIST while many more are in clinical testing

(Pagliarini et al., 2015). Nonetheless, the discovery of new

therapeutics for most cancers remains elusive. This has moti-

vated the use of larger-scale gene knockdown experiments to

discover functional gene requirements across diverse sets of

cancer (Cheung et al., 2011; Marcotte et al., 2012). The power

of RNA interference screens can, however, be hampered by

the inability to distinguish between on- and off-target effects

(low number of shRNAs/gene) or by the lack of statistical

power to describe molecular correlates of knockdown effects

(low number of models screened). To overcome these limita-

tions, we recently performed a large-scale deep shRNA

screen targeting 384 genes from the epigenome using �17

shRNAs per gene across 58 cell lines and demonstrated

robust detection of known and novel cancer vulnerabilities

(Hoffman et al., 2014). Based on the success of these efforts,

we launched a larger screen referred to as project DRIVE

(deep RNAi interrogation of viability effects in cancer). In

DRIVE, a lentiviral library was produced targeting 7,837

human genes with a median of 20 shRNAs per gene and

used to screen 398 cancer cell lines in a pooled format to

ascertain the effect on cell viability. Here we describe the

known and novel genes that comprise distinct classes of

cancer dependence including genetic, expression, metabolic,

and synthetic lethal relationships. This effort brings us closer

to a functional annotation of the cancer genome.
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RESULTS

Functional Genomic Screening Reveals Four Categories
of Dependency Outliers
In project DRIVE, we constructed deep coverage shRNA lentivi-

ral libraries targeting 7,837 genes (Table S1). Gene content

included known mutated/amplified cancer drivers, epigenetic

genes, transcription factors (TFs), cell surface proteins, and

druggable enzymes, as well as known pan-essential complexes.

This library was screened across 398 cell lines to identify gene

dependencies (Table S2). 2.7 3 108 cells were infected

(>1,0003 representation of the 151,504 member library) and

passaged for 14 days after infection. Quantile normalized log

fold change data were generated from next-generation

sequencing (NGS) counts of individual shRNAs after screen

versus the shRNA abundance in the library input.

shRNA activity was aggregated to gene-level activity by two

complementary methods, ATARiS and RSA (Figure 1A). RSA

uses all shRNA reagents against a given gene to calculate a sta-

tistical significance that knockdown of gene X leads to loss of

viability (König et al., 2007). ATARiS gene level scores incorpo-

rate only shRNAs that have consistent activity across the entire

dataset (Shao et al., 2013) and attempts to eliminate inert or

potential off-target shRNAs. The ATARiS algorithm median

centers shRNA level scores across all screened cell lines, result-

ing in a metric of relative effects so essential and inert gene

profiles appear no different. For this reason, RSA was used to

determine whether a gene was essential, active, or inert and all

other analyses used ATARiS to focus on only shRNA reagents

with consistent, on-target activity. As part of the Project DRIVE

resource, a public portal has been created using the Shiny

framework (Bassik et al., 2016) to allow visualization of gene

profiles (Sensitivity Profile Viz tab at https://oncologynibr.

shinyapps.io/drive/).

Using RSA to categorize each gene as inert, active, or essen-

tial (Figure 1B), >4,450 of the genes showed no significant

growth effects. Genes with an RSA value of %�3 for >50% of

cell lines were deemed essential. Assignment of GO terms for

this class demonstrated enrichment of critical cellular processes

such as translation, gene expression, and splicing. In addition,

correlation analyses for the essential genes uncovered two prin-

ciple features. First, gene dependence correlated with the

expression and/or copy number of the target gene itself (Fig-

ure 1B). For example, cell lines with low expression or a copy

number deletion of an essential gene were more sensitive to

knockdown. This phenomenon is termed CYCLOPS for genes

with heterozygous copy number deletion (Nijhawan et al.,
Figure 1. Project DRIVE Informatics and Outlier Analysis

(A) Project DRIVE screening and analytical workflow. 2-week pooled shRNA viab

gation by RSA and ATARiS. Feature correlation was performed using k-means c

display of top sensitivity correlations. KRAS example is shown.

(B) DRIVE gene activity categorization into inert, active, or essential profiles. Ess

correlations. RSAwaterfall plot for PHF5A, colored by PHF5A copy number. RSA s

tested. PSMC5 RSA sensitivity plotted against AGO2 CN and colored by AGO2

(C) Normality LRT compares the fit of a skewed Student’s t distribution and a n

normal have high NormLRT scores.

(D) Top DRIVE outliers by class colored by their presence in COSMIC. Non-COS
2012). Notably, PHF5A had the highest CN-dependence correla-

tion and while previously reported to be required for GBM stem

cells survival (Hubert et al., 2013), our data suggest thatPHF5A is

instead a broadly essential gene. The second principle feature of

essential genes was that gene dependence correlated with high

expression and/or copy number gain of AGO2, a component of

the RNA-induced silencing complex (RISC) (Figure 1B). This

strongly suggests that lines with increased AGO2 have improved

knockdown efficiency leading to enhanced shRNA activity

against essential genes. For example, the profile of the protea-

some component PSMC5 is shown in relation to AGO2 CN

and expression (Figure 1B). These two confounders must be

considered when genetic screens are conducted in small cell

line sets. A complete list of putative CYCLOPS and pan-essential

genes is provided (Tables S3 and S4).

To enable the discovery of features predictive of sensitivity, we

developed a bioinformatics pipeline. K-means (k = 3) clustering

of gene profiles was used to delineate sensitive and insensitive

populations and these classifications were used to interrogate

the feature sets of the CCLE (Figure 1A; Barretina et al., 2012).

This workflow enabled the systematic identification of sensitivity

predictors across the genes queried in Project DRIVE. We next

wanted to identify selective cancer cell dependencies in an unbi-

ased manner. To this end, an outlier analysis was performed to

identify profiles that demonstrated robust dropout behavior in

a subset of cancer cell lines (Figure 1C). A normality likelihood

ratio test (NormLRT) was applied to the gene-level ATARiS

scores to determine whether each gene profile had a distribution

divergent from normal and to assign an outlier score based

on the deviance between the normal distribution and the

skewed t distribution. This approach is agnostic to the direction

of the skew and therefore both growth suppressors and

enhancers are detected. Importantly, it is also sensitive to

a single cell line outlier. Lastly, NormLRT incorporates themagni-

tude of the phenotypic effect in order to focus on genes with

robust dependency. The top outliers (NormLRT > 125) fall into

distinct groups of dependence (Table S5). The majority (88%)

can be categorized into four classes: genetic dependence,

expression-based dependence, metabolic genes/enzymes,

and synthetic lethals (Figure 1D), with some genes belonging

to multiple classes. The first two classes encompass genes in

which the feature correlations predictive of dependence are

mutation, copy number amplification, or high-level mRNA

expression of the gene itself. Many of these genes are found

on the COSMIC gene consensus list (Forbes et al., 2017). In

the synthetic lethality and metabolism classes, the features

correlated with cancer cell line dependence appear to relate
ility screens were followed by an NGS readout and shRNA gene-level aggre-

lustering (k = 3) to identify sensitive and insensitive populations with resulting

ential gene dependency correlations include self-CN/expr and AGO2 CN/expr

ensitivity cutoff shown at�3 indicates that this is an essential gene inmost lines

expression.

ormal distribution. Profiles with better skewed Student’s t distribution fit over

MIC genes labeled and TFs shown as triangles.
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more closely to an altered cell state or genetic alterations in other

genes. Genes in these two classes have largely not been identi-

fied in cancer genomics efforts and are not contained on the

cancer consensus list.

Genetic Drivers of Cancer Dependency and Modifiers of
Oncogene Addiction
Mutated oncogenes (e.g., NRAS, BRAF, and KRAS) are among

the most robust dependencies observed in DRIVE (Figure 2A).

As expected, BRAF mutation and dependence are mainly

observed in colon, thyroid, and melanoma lines, while NRAS

mutation and dependence is most prevalent in melanoma.

KRAS mutation and dependence occurs in colon, pancreatic,

and lung lineages. Consistent with TCGA (Cancer Genome Atlas

Network, 2012) and emerging clinical data (Mayer et al., 2017),

PIK3CA shRNAs show activity across lineages with enrichment

in PIK3CAmut ER+ breast lines. In the DRIVE data, we observe

a novel genetic dependence involvingRRAS2 (TC21) (Figure 2A).

Both CAL51 and A2780 lines harbor RRAS2Q72L mutations

that are analogous to the KRASQ61 position. Interestingly, NCI-

H1048 harbors a G23S mutation that may mimic position G12

or G13 of other RAS proteins. While RRAS2 mutation appears

to be a relatively rare event in the primary tumors sequenced

as part of TCGA, position Q72 is the most recurrent and our

data suggest that this creates an oncogenic dependence.

Recurrent gene amplification of either mutated alleles or

wild-type alleles are a commonmechanism for oncogene activa-

tion. Forty genes demonstrate a strong correlation between

dependence and gene amplification (Figure 2B, genes in red).

For KRAS and BRAF, amplification of the mutant allele likely

contributes to dependence. On the other hand, wild-type

ERBB2,MET, and FGFR2 undergo extremeCNgain (>20 copies)

associated with cancer dependence. High-level amplification of

ITCH in a single thyroid cell line supports a role for ITCH in

anaplastic thyroid cancer (Ishihara et al., 2008). The 19q12

amplicon, seen in primary breast, ovarian, and endometrial can-

cers, harbors C19orf12, PLEKHF1, URI1, POP4, and CCNE1

(Cyclin E). Multiple genes in the amplicon exhibit elevated

expression leading to controversy as to whether a single gene

is the driver. We found that 19q12 amplified lines are dependent

on CCNE1 and CDK2 (Figure 2C) while the remaining genes

showed no correlation between CN and dependence. In contrast

to prior data (Theurillat et al., 2011), URI1 appears to be an

essential gene rather than a 19q12 driver gene based on its

dependency correlations with its own low expression and high

AGO2 (Figure S1). We also observed a set of genes in which
Figure 2. Genetic Drivers and Modifiers of Oncogene Dependence

(A) ATARiS waterfall plots for top mutation-driven dependencies, colored by the

(B) Self copy number/dependency Pearson correlation for each gene identifies am

CYCLOPS genes with a correlation >0.4 are listed.

(C) ATARiS profiles of CCNE1 (x axis) and CDK2 (y axis) where each dot is a cell lin

also Figure S1.

(D) EGFR expression versus ligand AREG expression, colored by EGFR depend

shown for upper right quadrant shows statistical significance for EGFR depende

(E) E2F3 dependency (size and color) plotted with its copy number (x axis) and RB

lower left quadrant shows statistical significance for E2F3 dependence with high

(F) KRAS dependency profile in lung lineage colored by mutation status. On the

SMARCA2 dependence, colored by mutation/expression status of KEAP1 and S
knockdown was strongly correlated with copy number, yet the

magnitude of the effect on cancer growth appeared to be

modest. These strong correlations appear to arise from the

dual contribution of slight copy number gain in dependent lines

and gene deletion in the least dependent lines. This pattern

seems unlikely to be indicative of key cancer dependent genes.

Genes in this category include ASH1L, ELF1, MBD1, MBD2,

PHLPP1, PLXNA4, and VAPB.

In using deep shRNA libraries we hoped to discover not only

the direct dependence on key drivers, but also genes that might

act as modifiers. Indeed, modifiers of oncogene dependence

can be observed in DRIVE. For example, EGFR dependence

in lung and other solid tumors is associated not only with ampli-

fication and expression of EGFR but also with high levels of

Amphiregulin (AREG) (Figure 2D). Dependence on the TF E2F3

is most correlated with E2F3 gene amplification and/or with

loss of expression of RB (Figure 2E). In lung cancer, we observed

a substantial number of KRASmutant cell lines in which KRAS is

dispensable for growth. Instead, these KRAS mutant lung lines

are susceptible to NFE2L2 (NRF2) and SMARCA2 (BRM) knock-

down correlated with loss-of-function mutations in KEAP1

and/or low SMARCA4 (BRG1), respectively (Figure 2F). This

has important implications for treating KRAS mutant cancers

with MAPK pathway inhibitors, as co-occurring mutation is

predicted to lead to de novo resistance.

Expression Correlation Analysis Identifies Oncogenes
and Lineage-Specific Transcription Factors
The second class of cancer-dependent genes was comprised

of those in which high-level expression of the target gene was

a top correlated feature. To further explore this class, we directly

correlated gene expression and gene dependence. 57 genes

had a negative correlation (�0.3 or better) where high levels of

target gene expression were associated with significant growth

effects upon shRNA-induced target knockdown (Figure 3A,

genes in red). Hits shown in bold were originally identified in

the unbiased outlier analysis. Genes in this class include many

previously described genetic drivers, as amplification and muta-

tion often leads to increased expression. Additionally, a number

of genes are unique to this class and show either a pattern

of broad expression correlations across different lineages (e.g.,

ZEB1, BCL2L1) or a more lineage-restricted pattern (e.g., MPL

and CCND3). Notably, many of the expression outliers are

lineage-restricted TFs (Figure 1D) (see below).

The transcriptional repressor ZEB1 shows a strong correlation

between gene expression and gene dependence observed
ir respective mutation status.

plified genetic drivers as well as CYCLOPS genes. Outliers shown in bold. Only

e colored by its CCNE1 copy number and sized by its CCNE1 expression. See

ence as measured by ATARiS sensitivity score. p value from Fisher exact test

nce with hi AREG and hi EGFR.

1 expression (y axis). p value from Fisher exact test shown for upper right and

E2F3 CN or low RB1 expression.

right, KRAS mutant lung lines only are co-plotted with KRAS, NFE2L2, and

MARCA4.
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Figure 3. Expression-Based Driver Dependency Outlier Class

(A) Self mRNA expression/dependency Pearson correlations for all genes in DRIVE are plotted. Outliers shown in bold. CYCLOPS shown in italics.

(B) ZEB1 expression versus CDH1 expression, colored by ZEB1 dependence.

(C) High-level BCL2L1 expression (color) predicts its dependence (left waterfall). BCL2L1 dependence is also correlated with BCL2L15 expression (right

waterfall).

(D) MPL dependence plotted versus expression, colored by hematopoietic subtypes or solid tumor cell line.

(E) Dependence on individual D-type cyclins plotted versus expression and colored by hematopoietic subtypes or solid tumor cell line.
across multiple lineages. ZEB1 dependence is linked to both

self-expression and lack of expression of CDH1, a transcrip-

tional repression target of ZEB1 (Figure 3B; Grooteclaes and

Frisch, 2000). BCL2L1 (BCLXL) is another example where high
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expression is predictive of dependence across lineages (Fig-

ure 3C). Interestingly, the lines most sensitive to BCLXL deple-

tion also express high levels of BCL2L15, a poorly studied

BH2/BH3-containing family member with weak pro-apoptotic



activity (Coultas et al., 2003). MPL is the receptor for thrombo-

poietin and sustains gain-of-function mutations in myeloprolifer-

ative neoplasms including essential thrombocythemia and

primary myelofibrosis (Pardanani et al., 2006). In DRIVE, only

four hematopoietic cell lines have appreciable MPL expression

and three demonstrate MPL dependence (Figure 3D). The

D-type cyclins interact with either CDK4 or CDK6 to govern

control of the G1/S transition (Otto and Sicinski, 2017). Each

cyclin shows a strong expression-dependence correlation (Fig-

ure 3E). CCND3 shows hematopoietic-specific expression and

dependence in collaboration with CDK6 in ALL and DLBCL while

CCND1 is active in solid tumor cell lines in collaboration with

CDK4. CCND2 shows activity in a smaller subset of lines in

both hematopoietic and solid tumor lineages but maintains a

strong expression correlation. These data suggest that within

a given cell line, a single D-type cyclin in combination with

CDK4 or 6 is required to mediate passage through the restric-

tion point. Hence, greater therapeutic specificity might be

achieved through the disruption of specific D-type cyclin-

CDK4/6 interactions.

Within the expression outlier class is a large collection of line-

age TFs (Figure 4A). Certain lineages demonstrate master TF

regulators where tissue-restricted expression is highly corre-

lated with sensitivity to gene depletion (MYB, PAX8, CTNNB1,

SOX10, and MITF). SOX10 is expressed in neural crest progen-

itors during development (Bondurand and Sham, 2013) and is

expressed in neural crest-derived tumors including melanoma

and glioma. The SOX10 relationship is binary where any detect-

able expression equates to dependence (Figure 4B).

HNF1B functions developmentally to control distinct aspects

of kidney, pancreatic, and liver tissue specification with adult

tissue expression also seen in the gonads and lung. In DRIVE,

cancer dependence for HNF1B is observed in kidney, pancre-

atic, liver, lung, and ovarian cell lines and shows a correlation

between expression and dependence (Figure 4B). In normal

development, HNF1B functions with HNF1A. However, in the

cancer cell line datasets we failed to observe HNF1A and

B co-dependence, suggesting that dependence might be driven

by HNF1B homodimers.

Within the hematopoietic lineage, specific subtypes have

unique TF dependencies (Figure 4C). Indeed, hierarchical clus-

tering based on TF dependence largely segregates thesemodels

by disease subtype. For example, models of DLBCL are uniquely

dependent on MEF2B where mutations have been previously

described (reviewed in Pasqualucci and Dalla-Favera, 2015).

Both MYB and RUNX1 are required for proliferation across

multiple leukemia subtypes (ALL and AML). RUNX1 forms the

core binding TF (CBF) in collaboration with CBFB to drive hema-

topoiesis (Tracey and Speck, 2000). RUNX1 knockdown was

most closely phenocopied by knockdown of its binding partner

CBFB and, to a lesser degree, MYB. shRNAs against FLI1 and

SPI1 demonstrated robust activity across many AML lines

whereas knockdown of CEBPA showed specific activity in the

M5 subtype of AMLs. These observations are consistent with

the model that myeloid leukemias suffer from a block in terminal

differentiation arising as a result of aberrant TF activity (Orkin and

Zon, 2008; Rosenbauer and Tenen, 2007). Finally, IRF4 expres-

sion is detectable across multiple lymphoma subtypes whereas
IRF4 dependency is uniquely detected in multiple myeloma as

previously described (Shaffer et al., 2008).

While no specific TF requirements were identified for themain-

tenance of basal breast cancers, analysis of luminal breast

cancer confirmed the network of TFs that coordinate the regula-

tion of hormonal signaling including ESR1, FOXA1, GATA3, and

TFAP2C (Figure 4D; Cyr et al., 2015; Lupien and Brown, 2009). In

addition, we also observed models that are dependent on

TFAP2A. Consistent with emerging clinical data, the luminal

subtype also showed dependence on components of the

PIK3CA/mTOR andCDK4 pathways (Baselga et al., 2012; Horto-

bagyi et al., 2016). The difference between the TF network

observed in the luminal subtype compared to the absence of

specific TF requirements in the basal subtype raises the possibil-

ity that basal phenotypes are a default differentiation state result-

ing from the absence of super-imposed specification (Bernardo

et al., 2013).

Synthetic Lethal Classes
In our usage, synthetic lethality (SL) included any altered cell

state (genetic, metabolic, or otherwise) that was linked to a

definable non-self genetic dependence. Within this class we

observed distinct subsets including those where synthetic

lethality was linked to a pathway, to loss of a paralog, or to collat-

eral lethality. In the parallel pathways of de novo synthesis and

salvage of thymidine, TYMP (thymidine phosphorylase) medi-

ates the reduction of thymidine to thymine. This activity reduces

cellular thymidine, which is normally produced by the activity of

TYMS (thymidylate synthase) as part of the de novo pathway.

A subset of cancer cell lines display an altered ratio of TYMP

(high) to TYMS (low) expression leading to the apparent cellular

dependence on residual TYMS (Figure S2A). Depletion of the

anti-apoptotic protein MCL1 showed a robust dependent

phenotype and a complex set of correlations with multiple

BCL2 proteins fromparallel pathways. Here, reduced expression

of BCL2L1 (BCLXL) accompanied by increased expression of

the pro-apoptotic BH3-only member BIM was most predictive

of sensitivity to MCL1 downregulation. In contrast, cell lines

with high BCLXL expression were refractory to MCL1 knock-

down (Figure 5A).

In addition to parallel pathway SL, we observed eight distinct

vertical pathway SL outlier dependencies. These included

dependence on b-catenin (CTNNB1) in the context of genetic

loss of APC (Figure 5A). Amplification and overexpression of

Cyclin E was correlated with sensitivity to knockdown of CDK2

(Figure 2C). Similarly, CBFB dependence was strongly associ-

ated with high expression of its binding partner RUNX1 in

hematopoietic lines. Cancer cell lines that retained wild-type

p53 were sensitive to depletion of either MDM2 or MDM4 (Fig-

ure 5A), likely resulting from the inappropriate activation of p53

after MDM2/MDM4 depletion. We also observed the previously

described SL pathway relationship between PTEN loss and

PIK3CB (Wee et al., 2008).

There has been significant interest in identifying synthetic

lethal interactions pertaining to the RAS pathway. In DRIVE, we

do not detect robust synthetic lethal interactions for mutant

KRAS, and previously published synthetic lethal interactions

are not confirmed in this dataset (Figure S2B; reviewed in
Cell 170, 577–592, July 27, 2017 583
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Figure 4. Lineage-Specific Transcription Factors

(A) ATARiS sensitivity score heatmap for each TF outlier per lineage. Shading is representative of average TF activity across all cell lines of a given lineage.

Whenever dendrograms are shown, a hierarchical clustering was used with Euclidean distance and average linkage.

(B) TF expression (x axis) plotted versus its dependency score (y axis), colored by specific lineages or squamous histology.

(C) ATARiS sensitivity score heatmap for hematopoietic transcription factors. The hierarchical clustering results in subtype segregation (color side bar on top of

dendrogram) based on functional activity of TFs.

(D) Breast lineage is plotted at the cell line level with sensitivity scores for TFs and other outliers. Genes grouped by functional class and receptor expression for

each models is shown at the bottom.
Downward, 2015, and primary references therein; Kim et al.,

2016; Zimmermann et al., 2013). Data supporting the notion

that RAF1 (CRAF) is required for Ras-dependent transformation
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(Blasco et al., 2011; Karreth et al., 2011) can be observed but

CRAF depletion does not phenocopy KRAS depletion (Fig-

ure S2B). This partial effect of CRAF depletion is also seen in



the NRAS mutant setting. The partial effect is unlikely to be the

result of insufficient CRAF knockdown as depletion of a known

positive regulator of CRAF activation, SHOC2, phenocopies

CRAF depletion (Figure S2C). Mutant RAS family members

may require suppression of multiple RAF family members or sup-

pression of additional effector arms beyond the MAPK pathway

to achieve efficacy. On the other hand, we do observe synthetic

lethal interactions for BRAF in the melanoma setting. Targeting

of a node downstream of mutant BRAF (MEK1 or ERK2) was

sufficient to induce vertical pathway lethality and in the case of

MEK inhibition, this has been recapitulated clinically (Flaherty

et al., 2012). In addition to positive regulators of MAPK signaling,

we also found the surprising observation that loss of negative

regulators downstream of activated BRAF in melanoma, such

as PEA15 and DUSP4, resulted in lethality, suggesting that

either too little or too much flux through the MAPK pathway is

detrimental in this setting.

We, and others, have described synthetic lethal interactions

among paralogous genes where one paralog is genetically inac-

tivated through mutation and/or deletion. Specifically, we found

that the loss of the SWI/SNF complex member BRG1 explains

the sensitivity observed upon BRM depletion in NSCLC cell lines

(Hoffman et al., 2014). Here, we observe a similar relationship for

ARID1A and ARID1B (Helming et al., 2014) in which mutation of

ARID1A renders cells dependent on ARID1B (Figure 5B) and for

RPL22 and RPL22L1. In this latter instance, microsatellite

instable (MSI+) cell lines have frequent single-nucleotide dele-

tions in a mononucleotide repeat in RPL22, a ribosome subunit

(Novetsky et al., 2013). RPL22 mutant lines were selectively

dependent on the paralog RPL22L1 (Figure 5B). In all three

cases, inactivating somatic mutations result in a dependence

on the remaining paralog.

We also observe paralog SL relationships where low or absent

expression (rather than mutation) of a paralog is associated with

dependence on the other. As previously discussed, CDK4 and

CDK6 show largely non-overlapping dependence in the CCLE.

In fact, the best predictor of CDK4 dependence in DRIVE is

low expression of CDK6. Similarly, the best predictor of YAP1

sensitivity is low expression of the paralog WWTR1 (TAZ).

ARF4 and 5 are the only two class II members of the ADP-ribo-

sylation factor family (Jackson and Bouvet, 2014). We observed

a novel synthetic lethal relationship where low expression of

ARF5 predicts for ARF4 dependency (Figure 5B). Finally,

VPS4A and B are homologs of the essential yeast VPS4 gene

(McCullough et al., 2013). VPS4B is located at 18q21.33 and

is frequently lost in concert with homozygous deletions of

SMAD4 (18q21.1) and this co-deletion event is associated with

dependence on the paralog VPS4A.

The VPS4A paralog dependence is also an example of collat-

eral synthetic lethality where bystander deletion of a neighboring

gene leads to cancer dependence (Figure 5C). This was first

described for the ENO1 locus on 1p36 resulting in dependence

on the paralog ENO2 (Muller et al., 2012). We were unable to

verify this finding due to the absence of relevant models in the

CCLE. We and others previously reported a second example,

namely the dependence on PRMT5 linked to the co-deletion of

MTAP and the tumor suppressor CDKN2A (Kryukov et al.,

2016; Marjon et al., 2016; Mavrakis et al., 2016). More recently,
a collateral lethal relationship was described for SMAD4 and

the nearby gene ME2, leading to dependence on the paralog,

ME3 (Dey et al., 2017). shRNAs for ME3 were not included in

the DRIVE library and hence we cannot detect this event. While

not a top outlier, we find that ubiquitin B (UBB) undergoes CN

loss with p53 and is correlated with dependence on the paralog

ubiquitin C (UBC) (Figure S3A). Finally, we observed that

frequent heterozygous deletion of p53 results in heterozygous

loss of three essential genes, POLR2A, MED11, and AURKB,

and is associated with increased sensitivity to knockdown of

these genes compared to cell lines with normal CN (Figure S3B).

In aggregate, we have detected synthetic lethal interactions for

some of the most prevalent tumor suppressors found in cancer

(Figure 5D).

DRIVE Sensitivity Network Uncovers Signaling
Pathways, Protein Complexes, and Lineage Biology
The density of shRNAs used per gene, the extensive set of cell

lines tested, and the robustness of the observed dependency

correlations led us to ask whether the viability effects of each

gene knockdown would be varied and robust enough to find

correlated gene-gene interactions based only on the gene

knockdown data. To test this, a similarity metric was calculated

for each pair of gene profiles (21,493,846 pairwise calculations;

see STAR Methods for details). This can be represented as

a network where each gene represents a node and each edge

represents the pairwise similarity between genes. The DRIVE

Sensitivity Network (DSN) interactive tool (Network Viz tab at

https://oncologynibr.shinyapps.io/drive/) allows for a single- or

multi-gene entry point to explore their local correlation neighbor-

hoods. In Figure 6, a global genetic interaction map is repre-

sented using the tSNE method that, despite the limitations of

2D, enables a global view of the network and conserves many

of its original features. Each point represents a gene depen-

dence profile, and the local ‘‘neighborhood’’ proximity between

two points represents the similarity in the original high-dimen-

sional network between two gene profiles. Individual subnetwork

examples created using the DSN tool are also shown (Figure 6).

Within the global network, we observe a dense and large

neighborhood comprised of essential genes (large circles) as

defined in Figure 1B. Despite the essential nature of this neigh-

borhood, there still exists sufficient differential variation in growth

effects across the cell lines to allow for the identification of large

protein complexes including the proteasome (purple), ribosome,

RNA polymerase complex, and themediator complex (pink). The

co-localization of a large number of non-essential genes within

this cluster suggests that full inactivation of these genes (by

CRISPR) might result in lethality. One pathway example in the

essential neighborhood is the DNA replication checkpoint. This

includes ATR as well as pathway components RPA3 that senses

ssDNA and RAD17 and TOPBP1 that help ATR transduce the

signal to the downstream kinase CHEK1. In contrast to the

essential gene neighborhood, the mTORC1 arm of the mTOR

signaling complex shows minimal activity across the dataset

but still shows robust correlations. Starting with the negative

regulator TSC2, its direct downstream target, RHEB, as well as

mTOR and RAPTOR can be seen as anti-correlations. Additional

Ragulator complex components are also seen in this mTOR
Cell 170, 577–592, July 27, 2017 585
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Figure 5. Synthetic Lethal Outlier Class

(A) Vertical and parallel pathway lethality outliers with DRIVE outliers listed first and pathway predictors listed second. For vertical pathway examples, relationship

is indicated by color. Example waterfall plots are colored by respective predictive feature.

(B) Paralog outliers are either mutation driven or expression driven. Example waterfall plots are colored by respective predictive feature.

(legend continued on next page)
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amino acid-sensing neighborhood including SEH1L, RRAGC,

WDR24, and MIOS.

The recapitulation of the p53 pathway is robust in DRIVE.

Known negative regulators (e.g., MDM2, MDM4, USP7, PPM1D)

all show dependence effects in the WT p53 setting. Conversely,

knockdown of p53 or positive regulators (e.g., TP53BP1,

USP28, and CDKN1A) promote the growth of cells harboring

WT p53. As an illustration of progressive cluster build using the

DSN interactive tool, we show the p53 network when a range of

2–10 nearest neighbors (NNs) is used (Figure S4). Here, as the

neighborhood is grown from 2 NNs to 10, the absolute correlation

coefficients (ranging from 0.35 to 0.86) decrease as indicated by

the thickness of the lines between genes. As such, all members

of the 2, 3, 4, and 5 NN networks are known components of the

p53 pathway whereas new associations seen in the 10 NN

network are less robust (by definition) and are not known p53

pathway members.

One can also observe network relationships between genes

that appear to have similar functional consequences when

depleted from cells. For instance, the PRC2 complex members

forma tight interaction network suggesting very similar functional

consequences of EZH2, EED, and SUZ12 knockdown consistent

with their function as a unit. In addition, the NN location of the

MLL/menin (MEN1) and ASH1L methyltransferase complexes

suggests a functional concordance between these proteins and

the PRC2 complex. Interestingly, the histone acetyltransferases

p300 and the MOZ complex, comprised in part by KAT6A

(MYST3, MOZ) and BRPF1, is located nearby to all three methyl-

transferases suggesting an interplay of acetylation and methyl-

ation with likely similar effects on cancer dependence.

Two cell cycle neighborhoods are observed within the DSN.

The CCNE1/CDK2 axis is active in cell lines with low RB expres-

sion or high CCNE1 expression. Here, E2F3 appears uniquely

required for CDK2-mediated cell cycle progression along with

SKP2 and CKS1B. These proteins collaborate to degrade p27

(CDKN2B) (Ganoth et al., 2001), hence their knockdown would

likely stabilize p27 leading to CDK2 inhibition. Interestingly, an

E2 enzyme, UBE2Q1, is found in the CDK2 node suggesting

that it may take part in p27 degradation. Not surprisingly, anti-

correlations with CDKN2A and RB1 are also observed. A second

sub-network of cell-cycle control genes regulating G2/M is

observed in the DSN. This includes Cyclin A2 and B1 along

with FOXM1 that controls transcriptional events required for

this transition including upregulation of CDC25B that controls

activation of CDK1. Interference with the timely activation

of the anaphase promoting complex (FBXO5) or the mitotic spin-

dle checkpoint (BUB1B, MAD2L1) has apparently deleterious

effects on a similar group of cell lines. BTG1, a G0/G1 cell cycle

inhibitor, is anti-correlated within this network, consistent with its

role in inhibiting early cell cycle progression.

The critical balance between BCL2 family members has been

highlighted as both MCL1 and BCL2L1 (BCLXL) demonstrate

complex dependency profiles with expression of both pro- and
(C) Collateral lethal outliers are listed with depiction of concept. Tumor suppre

a dependency due to loss of B or Y. VPS4A ATARiS waterfall plot is shown, colo

(D) Synthetic lethal outlier relationships identified in DRIVE associated with tumo

See also Figures S2 and S3.
anti-apoptotic family members in order to maintain cell survival.

WSB2 (WD40 repeat and SOCSbox protein) has an outlier profile

that does not contain robust features predictive of dependence

yet does demonstrate multiple connections to the apoptosis

pathway in the DSN. The most robust association is anti-correla-

tion of WSB2 and BAX. WSB2-positive correlations include

MCL1 and C8orf33. WSB2 is thought to be a component of

DDB1/CUL4 E3 ligase complexes (He et al., 2006). The anti-cor-

relation betweenWSB2 andBAX raises the possibility thatWSB2

acts as a negative regulator of BAX protein levels through ubiq-

uitin-mediated degradation.

In addition to pathway and protein complex networks, genes

with lineage-specific activity can be detected as DSN neighbor-

hoods. In the melanoma sub-network, nodes are observed that

highlight both TF dependencies (MITF and SOX10) and also

oncogenic signaling pathways. The MAPK node is robust

(BRAF, MAPK1) likely due to the prevalence of mutant BRAF.

However, the importance of fine tuning this pathway is also

highlighted as inhibition of the negative pathway regulators,

PEA15 and DUSP4, is similarly detrimental. The colon neighbor-

hood, likely dominated by APC mutation, includes the obligate

CTNNB1 partner, TCF7L2, as well as a collection of TFs

including GATA6, SMAD4, and YAP1.

DISCUSSION

In Project DRIVE, a high-density shRNA library was used to

assess the consequences of gene depletion for half of the

expressed genome of the CCLE in 398 cancer cell lines. Here

we provide the data and tools for interrogation as a resource

for the further elucidation of therapeutic targets in cancer. The

breadth of cell line coverage allows for a diversity of genomic

backgrounds to be probed and for relationships with similar

functional consequences to be identified. In addition, network

relationships for essential genes can be assembled due to

incomplete gene depletion by RNA interference. The robustness

of the dependence data and in particular the nodal relationship of

known protein complexes and pathways in the DRIVE Sensitivity

Network suggests that the drawbacks of RNAi, namely off-target

effects and inefficient target knockdown, were significantly

addressed by the use of appropriate deep coverage libraries

and computational methods. We retrospectively conducted a

power analysis to compare our ability to detect outliers with a

decreasing number of shRNAs/gene (Figure S5), allowing us to

estimate the optimal number of shRNA/gene to recover the

majority of the outliers for a dataset of this size. In this case,

15 shRNAs captures most of the observations seen with 20.

This is consistent with a previous estimatemade from one exper-

imental system (Bassik et al., 2013). While CRISPR can more

accurately model the null phenotype, there are acknowledged

shortcomings such as the need to express a nuclease (e.g.,

Cas9) and off-target lethality stemming from excessive cuts in

amplified genomic loci (Aguirre et al., 2016; Munoz et al.,
ssor (TS) deletion leads to collateral loss of nearby genes (B and Y) creating

red by VPS4B copy number.

r suppressor alterations.
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2016). Moreover, RNAi-mediated discovery of synthetic lethal

relationships with partial reduction of essential genes, such as

in the case of PRMT5, demonstrate that hypomorphs are needed

in some circumstances. As such, large-scale RNA interference

and CRISPR datasets are likely to be complementary.

To further consider the robustness of this shRNA screen, we

have compared small datasets generated by CRISPR studies

to the results seen in DRIVE (Munoz et al., 2016). Here, we find

a consistent and significant overlap of selective dependencies

when comparing shRNA and CRISPR screens across five

models with libraries of comparable content and depth. While

CRISPR did uncover more essential genes, every essential

gene scored by shRNA was also found by CRISPR, resulting in

zero shRNA false positives. As further orthogonal validation of

the DRIVE dataset, we have also intersected selected DRIVE

profiles with sensitivity calls from pharmacological treatment

with a number of small molecule inhibitors with clinically vali-

dated modes of action, namely EGFR (erlotinib), ERBB2 (lapati-

nib), BRAF (PLX4720), and PIK3CA (BYL719, alpelisib). We

observed a very significant association of models sensitive to

genetic target modulation (DRIVE) and sensitive to small mole-

cule inhibitor treatment across the respective pairs (Figure S6).

Taken together, the technical performance of deep shRNA

screening has been validated by several orthogonal means and

provides clear evidence for the robustness of DRIVE.

The molecular characterization of the CCLE allows for the

exploration of correlations between gene dependence and

genetic, expression, or other features of the cell line set. Two

out of our three defined outlier classes (genetic drivers, expres-

sion-based drivers) are self-associations, meaning they are

driven by characteristics of the target of the shRNA itself. The

synthetic lethal class represents relationships in which a non-

self association is most highly correlated with the shRNA knock-

down phenotype. These can be further broken down by the

specific relationships uncovered by DRIVE: pathway, paralog,

or collateral lethality. Themetabolism class also likely represents

synthetic lethal relationships but the molecular features to

explain the sensitivity are not yet characterized or are unclear.

Two metabolic neighborhoods found in the network analysis

(SCAP/SCD/SREBF1 and ASNS/ATF4/EIF2AK4) represent

known biological pathways yet no currently available molecular

feature explains sensitivity to these nodes. Similarly, depen-

dence on WSB2 did not correlate with definable genetic or

expression features yet the DRIVE network correlations with

BCL2 family members form the basis of a testable hypothesis.

Since our outlier approach is agnostic to the direction of the pop-

ulation skew, tumor suppressors CDKN2A and p53 are both

detected. Knockdown of these tumor suppressors results in

growth enhancement in cell lines that are wild-type for their

respective genes. Some of the most robust DRIVE/DRIVE corre-
Figure 6. DRIVE Sensitivity Network

DRIVE-DRIVE correlations are plotted using tSNE algorithm. Enlarged circles repr

examples include complexes (proteasome, mediator, epigenetic neighborhood),

Each subnetwork is displayed around the global tSNE plot with genes used to se

each seed gene are shown with positive correlations in green and negative correla

The thickness of the lines between two genes represents the strength of the cor

colored by pathway to illustrate correlations. See also Figure S4.
lations and anti-correlations are seen with p53 and its pathway

components (Figure 6). Hence, these interactions can help

robustly define the biology of the pathway rather than a specific

therapeutic target.

Ultimately the goal of this project is to define drug targets for

treating cancers within defined patient populations. The combi-

nation of the ATARiS gene summary and sensitivity feature

prediction pipeline coupled with the outlier approach identifies

robust and selective cancer dependencies and outlines a biolog-

ical hypothesis for the phenotype. It allows for relationships to be

discovered beyond those that could be predicted a priori, such

as by hotspot mutational analysis. Not surprisingly, in Project

DRIVE, we observe both known and novel mutation depen-

dencies that begin to assign functional significance to the cancer

mutational landscape. This dataset will also help to ascribe func-

tion (or not) to mutated genes unearthed by cancer genome-

sequencing efforts that have lacked functional validation.

Additionally, DRIVE can further refine what we know about

some of the most prevalent lesions in cancer. The search for

KRAS synthetic lethal interactions has been stymied by false

discovery and the data here raise the likelihood that no single

synthetic lethal gene will be found across all KRAS mutant

tumors. While we affirm that the majority of KRASmutant cancer

cell lines are indeed dependent on continued expression of

KRAS, we observed that some of the most commonly used

KRAS mutant models are not KRAS dependent, when interro-

gated as monolayer cell cultures. Hence, studies of therapeutic

approaches aimed at ablating KRAS dependence will need to

carefully consider these findings.

The DRIVE dataset adds significantly to our understanding of

cancer dependencies and synthetic lethal relationships, including

those for the most prevalent tumor suppressors. The homozy-

gous and heterozygous deletion of p53, homozygous deletion

of CDKN2A, and homozygous deletion of SMAD4 all result in spe-

cific collateral synthetic lethality involving a diverse set of genes

(UBC, POLR2A, AURKB, MED11, PRMT5, and VPS4A). For

ARID1A/ARID1B, RPL22/RPL22L1, and SMARCA4/SMARCA2,

inactivating mutations in the first paralog results in dependence

on the second. For CDK4, YAP, and ARF4, lack of expression

of their paralogs is predictive of dependence. Given the sub-

genome nature of our library and our focus on the top outliers

coupled with the expansion of themammalian genome, this class

of paralog relationships is only likely to grow. The identification of

synthetic lethal relationships for most major tumor suppressors

(Figure 5D) now creates the opportunity for novel therapeutics

for these defined patient populations.

For project DRIVE, we have created a public portal of gene

dependence profiles (https://oncologynibr.shinyapps.io/drive/)

that affords the cancer community a resource to validate or

devalidate experimental findings across nearly 400 cell lines
esent essential genes highlighting an essential gene subnetwork. Specific DSN

pathways (ATR, p53, G1/S, G2/M, mTOR, WSB2), and lineages (skin, colon).

ed the subnetwork shown in orange. Top three neighborhood correlations for

tions in red (the top four correlations are used when building the p53 network).

relation. Subnetwork seed genes are mapped back onto the global tSNE and
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rapidly by interactive query (Sensitivity Profile Viz tab). Further-

more, the DRIVE network associations can be used in combi-

nation with emerging large-scale datasets (e.g., proteomic,

transcriptional) to confirm the discovery of novel complex and

pathway components (Network Viz tab). The functional geno-

mics now provided by project DRIVE complement the molecu-

lar characterization by TCGA and ICGC to bring us closer to an

understanding of the molecular drivers of cancer.
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J., Baccarini, M., and Barbacid, M. (2011). c-Raf, but not B-Raf, is essential for

development of K-Ras oncogene-driven non-small cell lung carcinoma. Can-

cer Cell 19, 652–663.

Bondurand, N., and Sham, M.H. (2013). The role of SOX10 during enteric

nervous system development. Dev. Biol. 382, 330–343.

Cancer Genome Atlas Network (2012). Comprehensive molecular portraits of

human breast tumours. Nature 490, 61–70.

Cheung, H.W., Cowley, G.S., Weir, B.A., Boehm, J.S., Rusin, S., Scott, J.A.,

East, A., Ali, L.D., Lizotte, P.H., Wong, T.C., et al. (2011). Systematic investiga-

tion of genetic vulnerabilities across cancer cell lines reveals lineage-specific

dependencies in ovarian cancer. Proc. Natl. Acad. Sci. USA 108, 12372–12377.

Coultas, L., Pellegrini, M., Visvader, J.E., Lindeman, G.J., Chen, L., Adams,

J.M., Huang, D.C., and Strasser, A. (2003). Bfk: a novel weakly proapoptotic

http://dx.doi.org/10.1016/j.cell.2017.07.005
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref1
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref1
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref1
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref1
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref2
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref2
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref2
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref2
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref3
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref3
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref3
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref3
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref4
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref4
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref4
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref4
http://CRAN.R-project.org/package=shiny
http://CRAN.R-project.org/package=shiny
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref6
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref6
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref6
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref6
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref7
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref7
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref7
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref7
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref8
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref8
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref9
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref9
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref10
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref10
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref10
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref10
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref11
http://refhub.elsevier.com/S0092-8674(17)30812-7/sref11


member of the Bcl-2 protein family with a BH3 and a BH2 region. Cell Death

Differ. 10, 185–192.

Cyr, A.R., Kulak, M.V., Park, J.M., Bogachek, M.V., Spanheimer, P.M., Wood-

field, G.W., White-Baer, L.S., O’Malley, Y.Q., Sugg, S.L., Olivier, A.K., et al.

(2015). TFAP2C governs the luminal epithelial phenotype in mammary devel-

opment and carcinogenesis. Oncogene 34, 436–444.

Dey, P., Baddour, J., Muller, F., Wu, C.C., Wang, H., Liao, W.T., Lan, Z., Chen,

A., Gutschner, T., Kang, Y., et al. (2017). Genomic deletion of malic enzyme

2 confers collateral lethality in pancreatic cancer. Nature 542, 119–123.

Downward, J. (2015). RAS synthetic lethal screens revisited: Still seeking the

elusive prize? Clin. Cancer Res. 21, 1802–1809.

Flaherty, K.T., Robert, C., Hersey, P., Nathan, P., Garbe, C., Milhem,M., Demi-

dov, L.V., Hassel, J.C., Rutkowski, P., Mohr, P., et al.; METRIC Study Group

(2012). Improved survival with MEK inhibition in BRAF-mutated melanoma.

N. Engl. J. Med. 367, 107–114.

Forbes, S.A., Beare, D., Boutselakis, H., Bamford, S., Bindal, N., Tate, J., Cole,

C.G., Ward, S., Dawson, E., Ponting, L., et al. (2017). COSMIC: somatic cancer

genetics at high-resolution. Nucleic Acids Res. 45 (D1), D777–D783.

Fritsch, C., Huang, A., Chatenay-Rivauday, C., Schnell, C., Reddy, A., Liu, M.,

Kauffmann, A., Guthy, D., Erdmann, D., De Pover, A., et al. (2014). Character-

ization of the novel and specific PI3Ka inhibitor NVP-BYL719 and development

of the patient stratification strategy for clinical trials. Mol. Cancer Ther. 13,

1117–1129.

Ganoth, D., Bornstein, G., Ko, T.K., Larsen, B., Tyers, M., Pagano, M., and

Hershko, A. (2001). The cell-cycle regulatory protein Cks1 is required for

SCF(Skp2)-mediated ubiquitinylation of p27. Nat. Cell Biol. 3, 321–324.

Grooteclaes, M.L., and Frisch, S.M. (2000). Evidence for a function of CtBP in

epithelial gene regulation and anoikis. Oncogene 19, 3823–3828.

He, Y.J., McCall, C.M., Hu, J., Zeng, Y., and Xiong, Y. (2006). DDB1 functions

as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases.

Genes Dev. 20, 2949–2954.

Helming, K.C.,Wang, X.,Wilson, B.G., Vazquez, F., Haswell, J.R., Manchester,

H.E., Kim, Y., Kryukov, G.V., Ghandi, M., Aguirre, A.J., et al. (2014). ARID1B is a

specific vulnerability in ARID1A-mutant cancers. Nat. Med. 20, 251–254.

Hoffman, G.R., Rahal, R., Buxton, F., Xiang, K., McAllister, G., Frias, E., Bag-

dasarian, L., Huber, J., Lindeman, A., Chen, D., et al. (2014). Functional epige-

netics approach identifies BRM/SMARCA2 as a critical synthetic lethal target

in BRG1-deficient cancers. Proc. Natl. Acad. Sci. USA 111, 3128–3133.

Hortobagyi, G.N., Stemmer, S.M., Burris, H.A., Yap, Y.S., Sonke, G.S., Paluch-

Shimon, S., Campone, M., Blackwell, K.L., André, F., Winer, E.P., et al. (2016).
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Tobias

Schmelzle (tobias.schmelzle@novartis.com). The DRIVE library is available fromCellecta as outlined below. Cell lines can be attained

directly from the original supplier.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

383 of the cell lines are part of the original Cancer Cell Line Encyclopedia (CCLE) and were handled accordingly while the remaining

15 lines were kindly provided by investigators (Table S2). All models are regularly tested for being free of mycoplasma and their iden-

tity verified, both for the banked stocks (i.e., starting material for screen) as well as upon completion of screen (extracted gDNA for

NGS). A 79 SNP identification panel has been uploaded to the CCLE website by the CCLE team to allow investigators to readily iden-

tify CCLE cell lines.

METHOD DETAILS

Library Construction and Virus Production
The DRIVE library was synthesized by Cellecta as independent pools and are available for order from Cellecta using the following

library ID numbers: 55K_PoolA-MS-NOVA; 55K_PoolB-MS-NOVA; 27KBGP2-MS-NOVA; 13K-hTF-GH-NOVA; 13K-hYAP-GH-

NOVA; 13K-hEPI2-GHNOVA. Pool A, Pool B and a combination of the other libraries (BGP2, TF, YAP, EPI2 combination is referred

to as BGPD pool) were cloned in the pRSI16cb-U6-sh-13kCB18-HTS6-UbiC-TagRFP-2A-Puro vector. The DRIVE viral packaging

was scaled up to 5-layer Cellstack (Corning, Cat No, 22250-152). 2.1x10̂8 293T cells were plated on one 5-layer Cellstack 24hrs prior

to transfection. Cells were transfected according to themanufacturer’s recommended protocol (Cellecta). For each 5-layer Cellstack,

cells were transfected using 510.3 mL of TransIT reagent diluted into 18.4 mL of OPTI-MEM that was combined with 75.6 mg of the

plasmid pool and 94.5 mg of the Cellecta packagingmix (containing the psPAX2 and pMD2 plasmids that encodeGag/Pol and VSV-G

respectively). Virus was harvested at 72hrs post transfection, aliquoted, and frozen at �80C for later use. Viral titers were measured

and benchmarked against a reference virus that was used to assess infectability of each screened cell line.

Screening Approach
For each cell line the optimal puromycin dose required to achieve > 95% cell killing in 72 hr was determined bymeasuring cell viability

with a Cell Titer Glo or aMethylene blue staining assay for a 6-point dose response ranging from 0 to 8 mg of puromycin. The volume of

virus required to give an MOI of 0.5 (for delivery of only one shRNA per cell) was determined using a 10 point dose response ranging

from 0 to 400 mL of viral supernatant in the presence of 8 mg/ml polybrene. Infectivity was determined using titered virus from the

library backbone vector expressing RFP and measuring the % RFP-positive cells by FACS 4 days post-infection after three days

of puromycin selection. Cell lines that could not pass these screening characterization criteria (puromycin sensitivity, reasonable

infectivity and RFP positivity) did not enter the final screening queue.

The three DRIVE libraries were screened as independent pools across 398 cell lines. In short, cells were infected to maintain 1000x

library representation during the duration of the 2 week viability screen. For large-scale infections, 90 million cells (per library) were

plated 24 hr prior to infection in 5-layer CellSTACK culture chambers (Corning) in 500 mL of medium (one CellSTACK per library). On

the day of infection, the culture media was replaced with 500mL of fresh media containing 8 mg/ml polybrene and required volume of

virus for MOI of 0.5 was added. 24 hr after infection the culture media was replaced with 500mL fresh media containing puromycin at

the cell line-specific concentration. 72 hr following puromycin addition, cells were trypsinized, and 70-90 million cells were re-plated

in 5-layer CellSTACK culture chambers. An aliquot of cells was used to measure transduction efficiency determined by measuring

the % RFP positive cells and was typically > 90%–95%. Cells were maintained in culture and passaged as needed to ensure they

did not exceed 90% confluence during the course of the screen. At each split, 70-90 million cells were passaged into new flasks,

ensuring a representation of > 1000 cells/shRNA in the library and the % RFP positive cells was measured to ensure stability of

the transduced population over time. 14 days after infection, cells were trypsinized and samples of 70-90million cells were harvested

by centrifugation and stored at �80�C prior to gDNA extraction.

Purification of Genomic DNA & PCR for Library Production and Next Generation Sequencing
Cell pellets were processed according to the QIAamp�DNABloodMaxi Spin Protocol (Cat # 51192), and the resulting genomic DNA

resuspended in 2mls QIAGEN buffer AE. Genomic DNA concentrations weremeasured using a Picogreen dye-binding assay giving a

typical yield of 1mg gDNA permillion cells. For Next Generation Sequencing (NGS) library generation, the barcodes are PCR amplified

in 24 independent 100 mL PCR reactions using 4 mg of input gDNA per reaction with Titanium Taq, a single forward primer and one of

24 indexing oligos (as listed in Table S6) for 30 cycles. Library input DNA was also sequenced and referred to as plasmid counts in

the provided raw data. 24 independent PCR reactions were pooled and purified using the Agencourt AMPure XP PCR cleanup kit

(Beckman Coulter). The resulting products were analyzed by agarose e-gel to confirm the expected�190bp product and the amount

of purified product quantified using the Advanced Analytical Fragment Analyzer. Barcode representation was measured on the
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Illumina 2500 platform. For good representation of each shRNA in the NGS data, 40-60 million raw Illumina sequence reads were

required per sample averaging approximately 1000 reads per shRNA. Note that the individual plasmid pools for each shRNA library

were spiked into each NGS flowcell at 15% of the total loading volume as normalization controls.

QUANTIFICATION AND STATISTICAL ANALYSIS

From Raw Counts to shRNA Level Scores to Gene Level Scores
The drop-out value for each shRNA was calculated using the Bioconductor R package EdgeR (Robinson et al., 2010). The plasmid

and sample raw counts per shRNAs were normalized in pairs using the Timed Mean of M-values (TMM) normalization. In the rare

event that the plasmid spike-in failed to generate sufficient counts (< 20million total reads per plasmid) to be used as a normalization

control then a virtual library was used in place of plasmid counts. This virtual library is obtained by equalizing the library size of the

available plasmid libraries counts using the equalizeLibSizes function in edgeR and rounding the mean pseudo count of the resulting

output to the nearest integer. The edgeR negative binomial model is fitted to obtain the log fold change (logFC) of counts between the

sample and plasmid (the parameters used are common dispersion = 0.2 and prior count = 12). This is performed for each sample-

plasmid pair to obtain a logFC per shRNA per cell line. Additionally this procedure is performed on each pool individually. The logFC

are then normalized per sample using a quantile normalization to obtain a shRNA level sensitivity score. The shRNA level scores are

further aggregated to gene level sensitivity scores using either the ATARiS algorithm (Shao et al., 2013) or the RSA algorithm (König

et al., 2007). RSA uses all the shRNAs per gene to give a measure of the statistical significance of the drop-out of those 20 shRNAs

compared to the background of the rest of the shNRAs logFC. The method is directional and only captures shRNA drop-out, not

growth enhancing shRNAs. Additionally every gene incorporated in the screen is aggregated into a RSA score. ATARiS only uses

the shRNAs which display consistent profiles across the 398 samples, thus mitigating the potential issue of off-targets. Additionally,

inert genes will not generate ATARiS scores since the shRNAs are unlikely to correlate. The ATARiS algorithm can serially produce

multiple solutions depending on the number of clusters of shRNA showing consistent phenotype across the cell lines. In those cases

only the first solution is reported which generally represents the solution with the most shRNA (i.e., �84% of cases). Finally, the

procedure from raw counts to gene level scores is performed on each pool independently from each other.

Quality Control
Several QC metrics were considered when running the analysis pipeline. Those metrics were recorded and analyzed in aggregate to

identify potential outlier samples. In particular at the read count level the total number of read counts in each sample, the frequency of

the most abundant shRNA, and the third quartile of the read counts after library size scaling were considered and recorded. After

logFC estimation of the individual shRNA the proportion of pan-lethal genes represented in the lowest quartile within each sample

was also considered. The proportion of shRNAs with logFC below the quantile with p = 0.05 across samples was kept in order to

identify potential hyper-sensitive lines. Finally some shRNAs are present in all three pools and the correlation of those shRNA logFC

levels across the pools was assessed. Those metrics were then considered in aggregate to identify outliers which were removed.

Identifying Outlier Sensitivity Profiles
The distribution of the sensitivity scores can be used to identify potential genes of interest. In particular one hopes to prioritize genes

which are neither inert nor essential, but display differential sensitivity across samples, i.e., a subset of samples is strongly sensitive to

the knockdown, while the rest is unaffected. To identify these profiles a ‘‘Likelihood Ratio Test’’-based method was used (i.e.,

Normality LRT) which identifies profiles whose distribution diverge themost from the normal distribution. For each gene both a normal

distribution and a skew Student t distribution are fitted to the distribution of sensitivity scores across all cell lines. The Normality LRT

score is twice the log of the likelihood ratio of the fitted skewed distribution over the likelihood of the fitted normal distribution, i.e., the

difference between the deviance of the two models.

Feature Association
To find potential hypotheses explaining the observed sensitivity profiles an automated separation of the samples population into

sensitive and insensitive lineswas performed for each gene using a univariate k-means clusteringmethodwith k = 3. The two extreme

populations were designated as sensitive and insensitive, while the intermediate cluster was not used further. A differential represen-

tation of the known CCLE features across the two remaining populations was systematically undertaken to identify potential explan-

atory features (mutation, CNA, gene expression). The type of test performed was dependent on the feature type: Fisher Exact test for

mutation, Wilcoxon test for CNA and Bioconductor Limma (Ritchie et al., 2015) for expression. The resulting p values were adjusted

for multiple testing within each feature type using the Benjamini Hochberg correction.

GO Term Enrichment
The enrichment of GO terms within the essential genes of the screen compared to the remaining genes of the screen was calculated.

For this purpose ‘‘essential’’ geneswere defined as genes with 50%ormore cell lines displaying an RSA score below�3 upon knock-

down. For this analysis only the GO terms with 50 or more genes were considered (not restricted to the genes in the screen). For each

remaining biological process GO term a contingency table was built using the number of essential genes within the term, the number
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of essential genes outside the term, the number of non-essential genes within the term and the number of non-essential genes

outside the term in each of the entry of the 2x2 matrix. A Chi-square test was then performed on the resulting contingency table

and the top 5 most enriched Biological Process GO terms among the essential genes were reported. The Benjamini Hochberg

procedure was used to correct for multiple testing.

DRIVE Sensitivity Network
The DRIVE data was also used to build a co-sensitivity network (similarly to co-expression networks in expression datasets). In this

case genes were used as vertices and the absolute value of the correlation between the sensitivity profiles of two genes defined the

similarity of the gene pair (the correlation is performed across all samples using the Pearson correlation). In the DSN interactive tool

the strength of the similarity is represented by the weight of the edges linking the genes. To visualize the topology of the whole

network in two dimensions a t-distributed Stochastic Neighbor Embedding (tSNE) (van der Maaten and Hinton, 2008) is used

whereby the distance between two genes is defined as the square of one minus their similarity. So that the distance matrix d is

defined as

d= ð1� sÞ2 = ð1� jr j Þ2
with s the similarity matrix and r the Pearson correlation matrix fo
r the different gene profiles. t-SNE is a non-linear dimension reduc-

tion techniquewhichmodels nearby points in high dimension by nearby points in the lower dimensional space. This however is gener-

ally not possible without information loss. This can be seen in Figure 6 whereby genes which are in each other’s direct neighborhood

in the high dimensional network (presented in the interactive tool) are not represented close by in the 2D tSNE representation

(e.g., TP53, USP7 and MDM4). However some global aspects of the topology of the network are still conserved in particular the

distribution of essential genes in the network.

Coloring Scheme
Throughout the various figures a consistent coloring scheme was used whenever we represented CN or expression values. Namely

the color is saturated to blue or red among the lowest and highest 10%of samples respectively. Themedian value is colored light gray

and a linear scale is used between the 10th and 50th percentile (blue to gray) and 50th to 90th percentile (gray to red).

shRNA Power Analysis
To perform the shRNA power analysis we used a subset of the BGPD pool, focusing on 1381 genes with 20 and only 20 shRNAs per

gene. The ATARiS solutions were built for each of the 1381 genes and the outlierness by Normality LRT was calculated. The top 100

outlier genes were recorded and used for further analysis. The ATARiS calculation was then performed on those 100 genes with 5, 10

and 15 shRNAs selected at random. This process was repeated 10 times with random resampling of the selected shRNAs. In each

iteration, we recorded the number of top outlier genes for which an ATARiS solution was found.

Compound Sensitivity Calls and Comparison to DRIVE Profiles
The compound sensitivity calls are based on the results available in the CCLE (Barretina et al., 2012) and in the BYL719 report (Fritsch

et al., 2014) whereby the Amax (maximum observed response) and EC50 (inflection point) using an 8-point dose–response matrix are

combined to assess cell line sensitivity to compound treatment. Starting from the vector of responses Amax or EC50, we considered

the distribution of response values (for Amax, log-transformed EC50) in order to assign cell lines into sensitive, and non-sensitive

classes using a combination of EC50 and Amax cutoffs in a compound specific manner. In particular the cell lines below both of

the following cutoffs were deemed sensitive: Amax = �40% and EC50 = 1.95 mM for Erlotinib, Amax = �40% and EC50 = 1.95 mM

for PLX4720, Amax = �40% and EC50 = 1.28 mM for Lapatinib and Amax = �30% and EC50 = 3.04 mM for BYL719. For DRIVE the

cell lines with phenotypic values below �1 were deemed sensitive. The consistency of compound versus shRNA response was

assessed using Fisher’s exact tests on the contingency of their respective sensitivity call (i.e., sensitive versus non-sensitive).

DATA AND SOFTWARE AVAILABILITY

The raw data for project DRIVE is archived and publicly available in Mendeley (https://data.mendeley.com/datasets/y3ds55n88r/1).

The cell line feature data including DNA copy number, mRNA expression and mutation calls is available on the CCLE portal (https://

portals.broadinstitute.org/ccle/home). Algorithms used for the analyses are described and referenced in the individual ‘‘quantifica-

tion and statistical analysis’’ subsections. The custom code will be provided upon request to the Lead Contact.
e4 Cell 170, 577–592.e1–e4, July 27, 2017

https://data.mendeley.com/datasets/y3ds55n88r/1
https://portals.broadinstitute.org/ccle/home
https://portals.broadinstitute.org/ccle/home


Supplemental Figures

−4

−2

0

8 9 10 11
URI1 Expression

U
R

I1
 S

en
si

tiv
ity

Sc
or

e

−1.0
−0.5
0.0
0.5
1.0

AGO2_CNA AGO2_EXP
6
7
8
9

Figure S1. URI1 DRIVE Profile, Related to Figure 2C

URI1 Expression (x axis) is plotted compared to its Sensitivity Score (y axis). Each dot represents a cell line colored by its AGO2 CN and sized by AGO2

expression.
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Figure S2. Pathway Synthetic Lethality Outliers, Related to Figure 5

(A) TYMS DRIVE profile. TYMS sensitivity score waterfall plot is colored by the ratio of TYMP/TYMS expression (i.e., high TYMP expression coupled with low

TYMS expression indicative of sensitivity). (B) KRAS DRIVE profile with other reported synthetic lethal gene profiles. Cell lines are ordered by KRAS Sensitivity

Score and colored byKRASmutation status. Knockdown of a knownMAPK pathway component, RAF1 (cRAF), is shown as a comparator for a gene that partially

phenocopies KRAS knockdown. (C) NRAS, RAF1 and SHOC2 DRIVE profiles. Cell lines are ordered by NRAS sensitivity Score and colored by NRAS mutation

status. The highest correlating DRIVE profiles to the SHOC2 profile are RAF1 and NRAS.



−3

−2

−1

0

1

CELL LINE

Se
ns

iti
vi

ty
Sc

or
e

0

1

2

UBB log2CNA

UBC

−20

−15

−10

−5

0

CELL LINE

R
SA

 S
en

si
tiv

ity
Sc

or
e

−0.4
0.0
0.4
0.8

POLR2A
log2CNA

POLR2A

−15

−10

−5

0

CELL LINE

R
SA

 S
en

si
tiv

ity
Sc

or
e

−0.4

0.0

0.4

MED11
log2CNA

MED11

CELL LINE

−15

−10

−5

0

R
SA

 S
en

si
tiv

ity
Sc

or
e

−0.4

0.0

0.4

AURKB
log2CNA

AURKBA B

Figure S3. p53 Collateral Synthetic Lethality Examples, Related to Figure 5
(A) UBC DRIVE profile. UBC sensitivity is colored by the CN value of its paralog, UBB. (B) RSA sensitivity plots for POLR2A, MED11 and AURKB. Cell lines are

colored by their CN value for each respective gene.
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Figure S4. p53 DSN Nearest Neighbor (NN) Analysis, Related to Figure 6

Seed genes (p53, MDM4 and USP7; shown in orange) are used to nucleate the p53 neighborhood using the DSN interactive tool with a variable number of edges

per gene (2, 3, 4, 5, and 10). All the edges from non-seed genes are also shown whenever they are part of their respective top N neighbors (2, 3, 4, 5, and 10

respectively). Positive correlations are shown in green and negative correlations in red while the thickness of the lines between two genes represents the strength

of the correlation.
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Figure S5. shRNA Power Analysis, Related to STAR Methods ‘‘shRNA Power Analysis’’

The top 100 Outliers (by Normality LRT) were determined using the ATARiS solutions of 1381 genes containing 20 shRNAs per gene from the BGPD pool. 5, 10, or

15 shRNAs per gene were then randomly sampled for these top 100 outlier genes to generate ATARiS solutions. This process was repeated 10 times and the

ability to generate an ATARiS solution using only 5, 10 or 15 shRNA reagents per gene is shown on the y axis.
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Figure S6. Compound Sensitivity Coloring of DRIVE Profiles, Related to STAR Methods ‘‘Compound Sensitivity Calls’’

A Fisher’s exact test was performed comparing the compound sensitivity call and the DRIVE sensitivity call based on a value < �1.
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