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Clinical Application of Circulating 
Tumor Cells and Circulating Tumor 
DNA in Uveal Melanoma

INTRODUCTION

Uveal melanoma (UM) is the most common 
intraocular malignancy.1 Despite successful con-
trol of the primary tumor within the eye, meta-
static disease ultimately develops in up to 50% of 
patients, predominantly in the liver. Currently, 
there are limited therapeutic options for meta-
static UM, and as a result there is a high mortal-
ity rate.2 Extensive analysis of primary UMs has 
defined molecular features of the tumor cells that 
predict, with a high degree of accuracy, a patient’s 
risk for development of metastases. Biomarkers 
of poor prognosis include histopathological fea-
tures of the tumor; somatic copy number alter-
ations (SCNAs), such as loss of chromosome 

3, 6q, and 8q3,4; BAP1 mutations5,6; and the 
differential expression of marker genes that  
include well-characterized cancer-associated 
factors.7,8 Other features, such as gain in 6p and 
mutations in EIF1AX and SF3B1, are associated 
with better prognosis.4,6

Given that metastasis in UM arises from hema-
togenous dissemination, investigation of circu-
lating tumor cells (CTCs) and circulating tumor 
DNA (ctDNA) could provide a unique oppor-
tunity for genetic analysis of the patient’s tumor 
through a simple and safe blood test. Previous 
research has indicated that CTCs harbor genetic 
profiles representative of the primary tumor9 
and can be used to detect tumor-specific muta-
tions in other cancers.9-14 In UM, amplification 
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of DNA from a single CTC has been reported, 
with comparative genomic hybridization array 
showing copy number abnormalities associated 
with poor prognosis.15 A recent study described 
the detection of loss in chromosome 3 in CTCs 
using a modified fluorescence in situ hybridiza-
tion technique as a method to aid prognostica-
tion of UM patients likely to metastasize.16

An additional blood-based marker, commonly 
used to evaluate tumor burden and tumor-specific  
genetic features, is ctDNA.17,18 The high pro-
portion of recurrent hot spot mutations in UM 
enables the opportune detection of ctDNA 
using droplet digital polymerase chain reaction 
(PCR). UMs carry mutually exclusive activat-
ing mutations in GNAQ, GNA11, PLCβ4, and 
CYSLTR2, encompassing more than 90% of 
UM patients.4,19-22 Bidard et al18 detected ctDNA 
in 84% of patients with UM with metastatic dis-
ease and found ctDNA levels to be an indepen-
dent prognostic factor for both progression-free 
survival and overall survival.18 However, the 
presence and prognostic significance of ctDNA 
in patients with primary UM without detectable 
metastatic disease has yet to be evaluated.

Given that UM harbors distinct SCNAs that 
correlate with poor prognosis (L1p, L3, L6q, 
G8q) and good prognosis (G6p),4 their detection 
in CTCs may offer a minimally invasive method 
for prognostication. Furthermore, because ctDNA 
is highly correlated with tumor volume,18 it may 
offer a minimally invasive method for detection 
of metastatic disease.

Here, we evaluated the viability of CTC and 
ctDNA as suitable biomarkers to derive prog-
nostic information in UM. Whole-genome 
SCNAs were derived from CTCs and ctDNA 
from a patient with metastatic UM and com-
pared with those in the primary tumor. The 
blood of patients with primary UM was analyzed 
for both the number of CTCs immunomag-
netically captured using melanoma-associated 
chondroitin sulfate proteoglycan (MCSP) and 
the level of plasma ctDNA. Finally, we showed 
that ctDNA monitoring allowed early detection 
of metastatic disease in two patients with UM.

PATIENTS AND METHODS

Patients and Sample Processing

Thirty patients with primary UM from the Lions 
Eye Institute and Royal Perth Hospital, Perth, 

Western Australia, were enrolled in the study 
between March 2014 and November 2016. UM 
was diagnosed by clinical and ultrasound exam-
ination performed by a specialist ophthalmologist 
to evaluate the size and location of the intraocu-
lar tumor, including the presence of ciliary body 
involvement. Peripheral blood samples were taken 
from 30 patients before radiation plaque insertion 
or enucleation. Eight patients with metastatic UM 
were recruited from oncology outpatient clinics at 
Sir Charles Gardner and Fiona Stanley Hospitals. 
Written informed consent was obtained from all 
patients under approved Human Research Ethics 
Committee protocols from Edith Cowan Univer-
sity (No. 11543) and Sir Charles Gardner Hospi-
tal (No. 2013-246), Western Australia. For CTC 
quantification, blood was collected in Vacutainer 
K2 EDTA tubes (BD Biosciences, Franklin Lakes, 
NJ), stored at 4°C, and processed within 24 hours. 
Plasma was isolated by double centrifugation at 
1,600 g for 10 minutes and stored at −80°C.

CTC Capture, Quantification, and Low-
Pass Whole-Genome Sequencing

CTC isolation was adapted from a previously 
described protocol,23 detailed in the Data Supple-
ment. One hundred nanograms of whole-genome 
amplified (WGA) DNA (Data Supplement) was 
used to construct 200-bp sequencing libraries 
using an NEB Next Ultra Fragment Library Kit 
(New England Biosciences, Ipswich, MA) and bar-
coded using the Ion Xpress Barcode Adapters 1-96 
Kit (Life Technologies, Carlsbad, CA). Libraries 
were sequenced for 520 flows on a P1 sequencing 
chip using an Ion Proton Sequencer (Life Tech-
nologies). Sequencing depths ranged from 0.26 to 
0.59×. Somatic mutations and SCNAs were ana-
lyzed using Ion Reporter 4.6 (Life Technologies).

ctDNA Quantification

Cell-free DNA (cfDNA) was extracted from 1 
to 5 mL of plasma using a QIAamp Circulating 
Nucleic Acid kit (Qiagen, Hilden, Germany) 
according to the manufacturer’s instructions and 
stored at −80°C. ctDNA was quantified using 
droplet digital PCR and PrimePCR assays as 
described in the Data Supplement.

Statistical Analysis

The Spearman rank correlation coefficient was 
used to test the correlation between the level 
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of ctDNA, number of CTCs, and tumor size. 
Tumor volume was calculated using a formula 
previously described.24 The numbers of captured 
CTCs in patients with and without monosomy 
of chromosome 3 were compared using a non-
parametric Mann-Whitney U test. Statistical 
analyses were performed using Graphpad Prism 
version 5.0 (GraphPad Software, La Jolla, CA).

RESULTS

Analysis of Somatic Copy Number 
Alterations in CTCs From a Patient With 
UM With Metastatic Disease

CTCs were isolated from peripheral venous 
blood of a patient with metastatic UM (patient 
640). The patient was originally diagnosed with 
UM in February 2015 and underwent plaque 
brachytherapy; however, response was subopti-
mal, and the eye was subsequently enucleated. 

The clinical history of this patient is detailed 
in the Data Supplement. In March 2017, the 
patient was diagnosed with metastatic UM, with 
bone marrow activity in the spine, pelvis, ribs, 
and both femora (Fig 1A). Analysis of a blood 
sample obtained in March 2017, before initi-
ation of pembrolizumab therapy, showed the 
presence of 33 CTCs in 8 mL of blood. A total 
of three CTCs were separated and subjected 
to WGA (Fig 1B). A single peripheral blood 
mononuclear cell (PBMC) subjected to WGA 
was used as negative control. The accuracy and 
reliability of this WGA method for the analysis 
of single UM for assessment of SCNA were first 
demonstrated using individual cells from three 
UM cell lines (Data Supplement).

Two CTCs and a PBMC provided suitable WGA-
DNA material for whole-genome sequencing. 
In addition, we sequenced DNA extracted from 
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Fig 1. Comparison between the genetic profile of the primary tumor, cell-free DNA (cfDNA), two circulating tumor cells (CTCs), and a single 
peripheral blood mononuclear cell (PBMC) in a patient with metastatic uveal melanoma. (A) Whole-body fluorodeoxyglucose–positron emission 
tomography scan of a patient with uveal melanoma at the time of blood collection. (B) Brightfield and florescent images of the two CTCs used for 
somatic chromosomal copy number alteration analysis. Cells were stained with a combination of antibodies against the melanoma markers mela-
noma antigen recognised by T cells 1 (MART1)/glycoprotein 100(gp100)/S100 calcium-binding protein β (S100β; green), CD45 (red), and 4',6- 
diamidino-2-phenylindole (DAPI; blue), taken at ×200 magnification. (C) Whole-genome sequencing somatic chromosomal copy number alteration 
profile of primary formalin-fixed paraffin-embedded tumor, cfDNA, two CTCs, and a single PBMC. The obtained sequence depth is indicated for 
each plot. Red and blue bars represent chromosomal losses or gains, respectively.
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the patient’s archived formalin-fixed paraffin- 
embedded primary tumor (with > 80% tumor 
cellularity) taken 2 years before isolation of 
CTCs. We also assessed cfDNA extracted from 
the same blood draw as that for CTC isolation. 
The primary tumor had large copy number 
gains in chromosome 1q, 5, 6p, 7, 8, 10, 17, 18, 
19, 20, 21, X, and Y (Fig 1C). Multiplex ligand- 
dependent probe amplification (MLPA) analysis of 
the primary tumor confirmed the chromosomal 
gains of 6p and 8p/8q and the lack of evidence 
for SCNAs of 1p and 3p/3q (Data Supplement). 
The two isolated CTCs also showed overlap-
ping chromosomal gains and losses in compari-
son with the primary tumor, despite the primary 
tumor being removed 2 years earlier (Fig 1C). 
DNA was unable to be recovered from the bone 
metastases because of acid decalcification of the 
specimen before embedding. Additional alter-
ations found in CTCs comprised a gain in 6q in 
both cells, a gain of chromosome 22 in CTC1, 
and a loss of chromosome 10 in CTC2. The 
PBMC analyzed did not harbor any SCNAs (Fig 
1C), same as multiple PBMCs used as negative 
controls in the validation experiments (Data 
Supplement). The GNA11 Q209L mutation was 
detectable in DNA derived from the primary 
tumor and in WGA CTCs.

Sequencing of cfDNA from the same blood sam-
ple from which CTCs were isolated also showed 
similar chromosome gains, with trends toward 
gains in some chromosomal alterations found 
in the primary tissue; however, these did not 
reach the threshold to be called a true gain (Fig 
1C). cfDNA analysis could not detect all of the 
changes found in the primary tumor, most likely 
because of a high abundance of normal DNA.  
Droplet digital PCR targeting the GNA11 
Q209L mutation in the cfDNA indicated the 
presence of 15,460 copies/mL of mutant DNA in 
plasma, with a 20.2% frequency abundance rela-
tive to normal DNA. Thus, despite the significant 
abundance of ctDNA, this compartment is not as 
sensitive as CTCs for the analysis of SCNAs.

These results illustrate that tumor-associated 
SCNA can be ascertained through genetic anal-
ysis of CTCs, providing important prognostic 
information. Because prognostication is critical 
for the clinical management of patients diag-
nosed with early-stage UM, it was important 
to determine whether CTCs and ctDNA were 
readily detectable in these patients.

CTCs in Blood of Patients With Primary UM

To determine the UM CTC detection rate in 
patients with localized disease, we analyzed the 
blood from 30 patients with primary UM, with-
out the presence of clinically identifiable meta-
static disease, obtained before radiation plaque 
insertion or enucleation (Table 1). CTCs were 
identified by positive staining for melanoma 
antigen recognised by T cells 1 (MART1)/glyco-
protein 100(gp100)/S100 calcium-binding pro-
tein β (S100β) and negative staining for CD45 
(Fig 2A). A total of 15 of 26 (58%) individuals 
with assessable results had at least one CTC in 
8 mL of blood, with a range of one to 37 CTCs 
detected, and 14 (54%) patients had two or 
more detectable CTCs. Only single cells, rather 
than clusters, were detected in all patients. The 
presence or quantity of CTCs captured using 
MCSP did not correlate with the tumor basal 
and apical sizes or tumor volume (Figs 2B-2D). 
Nevertheless, among the 10 patients who under-
went tumor biopsy, no significant difference was 
found between the number of CTCs and mono-
somy or loss of chromosome 3 in the tumor (Fig 
2E; P = .062).

ctDNA in the Blood of Patients With 
Primary UM

The plasma from all 30 patients with UM 
described above was also analyzed for the 
presence of common UM-associated muta-
tions GNAQ/GNA11 Q209L/P, GNAQ/GNA11 
R183Q/C, PLCβ4 D630Y, and CYSLTR2 L129Q 
(Table 1; Fig 2). Screening for all of these muta-
tions was necessary in our study, because for 
most patients fine-needle aspirate biopsies 
were either not performed or provided limited 
amounts of DNA that was used for MLPA test-
ing and, therefore, we were unable to determine 
the tumor’s driver mutations before testing for 
ctDNA. Instead, all patient blood samples were 
tested for these mutations, because they have 
been reported to occur in > 90% of UMs.19,20,22 
We detected ctDNA in eight of the 30 patients 
tested (23%; range, 1.6 to 29 copies); two 
patients had a GNAQ Q209L mutation, two had 
a GNA11 Q209L mutation, one had a GNA11 
Q209P mutation, one had a GNA11 R183C 
mutation, one had a PLCβ4 D630Y mutation, 
and one had a CYSLTR2 L129Q mutation. Only 
four of 30 patients had simultaneous detection 
of ctDNA and CTCs (Fig 2F). In those with 
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detectable mutations, ctDNA levels were cor-
related with tumor size (largest basal/apical 
diameter/volume; Figs 2G-2I).

ctDNA for Detection of Metastatic UM

We also analyzed ctDNA in eight patients with 
metastatic UM. In contrast to those with local-
ized disease, all patients with metastatic UM had 
detectable ctDNA (Table 2; Fig 3A; P < .001). 
Retrospective analysis of longitudinal samples 
collected from two patients indicated that detec-
tion of ctDNA preceded radiologic recognition 
of liver metastases.

Patient 656 had an enucleation 3 months before 
enrollment and a history of low-grade lympho-
proliferative disorder and pulmonary embolism. 
Pathology of the enucleated tumor confirmed 
a choroidal melanoma, with Callender classifi-
cation mixed and no angiolymphatic invasion. 
MLPA classified this patient as high risk (loss of 
chromosome 3p/q plus gain of 8q). A positron 
emission tomography (PET) scan 4 weeks before 
enrollment showed mildly fluorodeoxyglucose 

(FDG)-avid bilateral pelvic and inguinofemoral 
lymphadenopathy consistent with her history 
of a low-grade lymphoproliferative disorder. 
Surveillance computed tomography scans per-
formed 6 months later did not show any evi-
dence of metastatic melanoma. However, the 
baseline liquid biopsy indicated the presence of 
mutant GNA11 R183C ctDNA at 13 copies/mL 
(Fig 3B). A second blood test at week 13 showed 
a similar low level of ctDNA (20 copies/mL). 
A concurrent PET scan showed small-volume 
FDG-avid foci evident near the right hilum and 
at the right lower lung. An early follow-up com-
puted tomography scan at week 24 confirmed 
multiple small moderate FDG-avid liver and 
lung metastases. The closest blood analysis, at 
week 26, before initiation of pembrolizumab 
therapy, still indicated low ctDNA concentra-
tions (10.8 copies/mL). A final blood collection 
at week 33 indicated the presence of 17.2 cop-
ies of ctDNA, with a recent scan showing no 
improvement on disease burden.

Similarly, in another patient (patient 433), 
1.8 copies/mL of ctDNA encoding a GNA11 
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Fig 2. Circulating tumor cell (CTC) and circulating tumor DNA (ctDNA) quantification in a primary uveal melanoma (UM) cohort. (A) 
Example of immunocytochemical staining of a UM CTC and peripheral blood mononuclear cell (PBMC). Green fluorescence (AF488, Mel) 
indicates staining with a combination of antibodies against the melanoma markers MART1/gp100/S100β; red fluorescence (phycoerythrin [PE]) 
indicates CD45 positivity; and blue fluorescence (4',6-diamidino-2-phenylindole, DAPI) indicates the presence of a nucleus. CTCs were identified 
as Mel-positive and DAPI-positive and CD45-negative cells. (B-E) Graphs illustrate (B) CTC count versus basal median diameter (n = 26; P = .874; 
r = −0.034), (C) tumor size as apical height (n = 26; P = .237; r = −0.250), or (D) tumor volume (n = 26; P = .338; r = −0.244). Spearman rank r and  
P values are indicated. (E) Comparison of CTC counts in patients with UM with and without chromosome 3 monosomy (n = 10). Mann-Whitney 
U test P value is indicated. (F-I) Graphs illustrate (F) ctDNA copies/mL versus CTC count in 8 mL of blood (n = 26), (G) ctDNA copies/mL versus 
basal median diameter (n = 30; P = .787; r = 0.053), (H) tumor size as apical height (n = 30; P = .384; r = −0.170), or (I) tumor volume (n = 30;  
P = .982; r = −0.004). Spearman rank r and P values are indicated. No correlation was found between CTC, ctDNA, and tumor size.
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Table 2. Characteristics of Patients with Confirmed Metastatic Disease

Patient 
No. Age Sex

Baseline ctDNA 
(copies/mL)

ctDNA 
Mutation

Primary UM 
Location (eye) Location Metastasis Sites

245 60 M 5,745 GNA11 Q209L — Choroid Liver

270 73 M 178 GNAQ Q209L L Choroid Liver

411 54 F 2 GNA11 Q209L R Choroid Lung, lymph nodes

433 65 M 9 GNA11 Q209L L Ciliary body Liver

477 68 M 3,300 GNA11 Q209L R Choroid Lymph nodes, pleura, abdomen

640 71 M 15,160 GNA11 Q209L R Choroid Systemic bone marrow, liver, 
lungs

656 82 F 11.2 GNA11 R183C L Choroid Liver, lungs

NOTE. Dash (—) indicates data were unavailable. All patients were white.
Abbreviations: ctDNA, circulating tumor DNA; L, left; R, right; UM, uveal melanoma.
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Fig 3. Analysis of circu-
lating tumor DNA (ctDNA) 
in patients with liver 
metastasis. (A) Comparison 
of ctDNA levels in patients 
with primary (n = 27) and 
metastatic (n = 8) uveal mel-
anoma (UM) showed statis-
tically significant differences 
(Student t test, P < .001). (B) 
Plasma ctDNA levels in lon-
gitudinally collected samples 
from patient 656 with UM. 
(C) Plasma ctDNA levels 
in longitudinally collected 
samples from patient 433 
with UM, before and after 
the development of overt 
metastatic disease as shown 
by fluorodeoxyglucose– 
positron emission tomog-
raphy imaging of the liver. 
NAD, no active disease;  
PD, progressive disease.  
(*) Resection of a solitary 
liver metastasis.
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Q209L mutation was detected 55 weeks after 
brachytherapy (Fig 3C). A concurrent PET 
scan did not indicate the presence of metastatic 
growth. By week 75, a PET scan and MRI scan 
detected an isolated liver metastasis. Plasma 
analysis indicated an increase in ctDNA to 9 
copies/mL. The metastatic lesion was surgically 
removed, and a slight decrease in ctDNA was 
observed. However, ctDNA levels significantly 
increased to 1,380 copies/mL by week 96, with 
the concurrent imaging indicating new extensive 
metastases to the left lobe of the liver and new 
bone metastases. These results illustrate that for 
UM, ctDNA can be used to track disease burden 
and has the potential to provide a complemen-
tary measure in addition to imaging.

DISCUSSION

Our results provide the proof of concept for 
using blood-based biomarkers for prognosti-
cation and routine monitoring of patients with 
UM. First, we showed that SCNA significant for 
UM prognostication can be detected in CTCs. 
Second, we found that CTCs can be detected, 
albeit at a low quantity, in most patients with 
UM with primary localized disease. Finally, 
although ctDNA was commonly undetectable 
in localized UM, monitoring of ctDNA allowed 
for early detection of metastatic disease. These 
preliminary findings warrant additional clinical 
studies to validate the use of these two biomark-
ers for the management of UM.

Previously, SCNA profiles of the primary 
tumor have been shown to accurately identify 
patients with UM at risk for developing meta-
static disease.4,25 Although fine-needle aspirate 
biopsies are performed worldwide, genetic test-
ing of UM primary tumors can be hampered 
by patients declining biopsy because of the 
perceived invasiveness of the procedure and 
the preferred use of sight-conserving thera-
pies. Nevertheless, up to 50% of patients with 
UM will develop metastatic tumors after either 
short or long latency periods.26 Thus, develop-
ment of pre-emptive adjuvant therapies may be 
an important strategy for improving survival. In 
this context, the provision of a blood test for 
the identification of prognostic SCNA from 
CTCs would allow identification of patients at 
risk, aiding triaging of patients for clinical tri-
als and more frequent systemic surveillance for 
metastatic disease.

Most CTC studies in UM have been limited to 
CTC quantification. However, they have failed 
to find significant association between the lev-
els of CTCs and disease prognosis.27,28 Similarly, 
we found that most patients have detectable 
CTCs irrespective of the predicted propensity 
of their tumor to metastasize, indicating that 
the presence of these CTCs may not be associ-
ated with metastatic disease risk. However, our 
CTC detection was restricted to the detection 
of MCSP-expressing cells, and thus we cannot 
exclude that CTCs expressing other cell surface 
markers may also provide prognostic informa-
tion, as shown in some studies.28,29 Nevertheless, 
the opportunity to examine the genomic fea-
tures in CTCs may offer a more accurate indi-
cation of patient metastatic risk, in comparison 
with simple quantification of CTCs. On the 
basis of the results presented here, methodolo-
gies to enhance CTC capture16,28 are needed for 
the optimal implementation of CTCs as a via-
ble alternate source of tumor genetic material 
from which prognosis can be derived for most 
patients.

Sequencing of the matching cfDNA revealed 
several large chromosomal gains, but because of 
the high abundance of normal cfDNA, we could 
only detect trends toward chromosomal amplifi-
cations found in the CTCs and primary tumor. 
Patient 640 (Fig 1) had a high disease volume, 
with 15,460 copies/mL of GNA11 Q209L 
ctDNA with a fractional abundance of 20%, 
whereas by contrast the highest ctDNA level 
in our primary UM study was found to be 29 
copies/mL, with a fractional abundance of < 1%; 
therefore, sequencing of patients with localized 
disease for SCNA profiles may prove ineffective. 
Previous studies investigating SCNA in cfDNA 
similarly required the presence of a large frac-
tion of ctDNA present to obtain results similar 
to the tissue of origin.30 Thus, although ctDNA 
is much easier to isolate, analysis of SCNA in 
CTCs should prove to be a more effective means 
of analyzing prognostic SCNA.

We also showed that ctDNA is not commonly 
detectable in blood of patients with localized 
UM. In contrast, most patients with metastatic 
UM we have tested have detectable ctDNA, 
consistent with a previous report.18 Nonetheless, 
longitudinal monitoring of two patients with 
primary UM who later developed metastatic 
disease showed undetectable levels of ctDNA 
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at baseline, but ctDNA was detected around the 
time of clinical confirmation of disease progres-
sion by PET scan. Our findings in this study 
indicate that the low levels of detectable ctDNA 
in patients with primary disease are not suitable 
for screening of patients at a high risk of devel-
oping metastasis. However, given the high pro-
portion of hotspot mutations in UM,4 ctDNA 
analysis may be a feasible minimally invasive 
method of monitoring metastatic disease burden 
and disease progression, as we have exemplified 
here.

In conclusion, our study underscores the poten-
tial clinical use of liquid biopsy for UM. Possible 
clinical applications involve the use of CTCs 
to derive SCNA for stratification of UMs into 
low- or high-risk categories and ctDNA to 
monitor disease progression, pending clinical 
validation of our findings through future pro-
spective studies.
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